Swarmongers: A Simple Retro 2D Vector Shooter

George Chadderdon, 11/28/01

1 Introduction

When I first joined Magic Lantern, I had some experience programming games on my own. I had, on and off, been working on programming my own text-adventure game based on an old Apple game called Eamon. This went through various incarnations in Applesoft Basic and Pascal on the Macintosh. There were also a handful of turn-based strategy games that I coded in the Apple II and Mac environments. However, I had never really developed a full-fledged video-game in the sense of something like Asteroids or even Pong (though there was one rather humorous effort called Martian Invaders which was a kind of proto-video-game in Applesoft Basic which used the Apple’s low-res graphics to represent your ship which could slide up and down firing at 6 or so fixed-location “Martian ships” that had a pretty lame static firing pattern). I’d certainly never programmed a video-game in a Windows/PC coding environment.

One of my first tasks was to get some exposure to DirectX and the overall architecture of PC video games. To that end, I started looking at Mark Sachs’ port of Star Castle and studying Andre LaMothe’s “Windows Game Programming for Dummies”. As I analyzed this code and got a better feel for how Mark’s vector-based game worked, I had an urge to create my own vector engine and game. Thus, Swarmongers was born.

Swarmongers is a simple Asteroids-style 2D shooter which uses vector graphics to represent the ships, shots, and explosions in the game. There are 20 levels in the game and the player starts with 3 ships. There is a left-turn, right-turn, thrust, and fire button, much like there is in Star Castle. There are three kinds of powerups you can grab: a full-health powerup, triple-fire, and rapid fire. (If you’ve ever played the Mac game, Maelstrom, this was the inspiration for that.) There is a kind of story thread running throughout with a few screens of story-line (with placeholders for epic splash screen art) and an “in-engine” game intro which kicks off the execution of the game (and can be skipped by hitting the Spacebar). Different enemy times have different destruction point values and the point tally is kept at the top during the game.

Swarmongers is an unfinished game. In addition to missing splash art, there are some aspects of game balance that need adjusting, and some whole features, such as having waves of spawn-ins on each level and having a high-score board which were never implemented. However, the germ of a simple 2D shooter with some pretense at mission and story is there.

This document provides an overview to the game and its architecture with an emphasis on a discussion of game-play and AI. For DirectX functionality, Swarmongers used with very little modification GPDUMB code taken from the CD included in LaMothe’s book. In my work on Swarmongers, I wanted to focus on game-play and AI development and using LaMothe’s code allowed me to insulate myself from the details and issues of DirectX and concentrate on the game itself. I feel that this approach paid off in my work. Likewise, the use of a vector engine, rather than, for example, a sprite engine, allowed me to focus on the nuts and bolts of game-play rather than the visual-art aspects.

2 Game Instructions and Cheats

When the game is started, an intro screen appears which tells the back-story of the game. First, there is only text over a star-field. Then three ships appear and the stars start moving to indicate that the ships are flying forward in formation. Finally, the other (enemy) ships appear and there is a fight in which the 3 ships are doomed to destruction as ominous intro music plays. The fight sequence could actually be called an in-game sequence because once the fighting begins, all of the ships are executing the actual in-game AI. At any point, the intro sequence can be skipped by hitting Spacebar.

When Spacebar is hit, or you wait long enough, you arrive at the logo (i.e. “attractor”) screen. From here you can hit Spacebar to start the game or Enter to visit the instructions. From the instructions, one can see a number of things. There are friendly, neutral, and hostile ships/objects in the game. Hostile ships generally fire at the player and friendly ships. Friendly ships will actually attack hostile ships, and they are given negative point values to penalize friendly fire. Neutral objects don’t attack either friendly or hostile ships but will cause damage to either in the event of collisions. The main controls are like those of Star Castle. Left-arrow (or a left mouse movement) turns the ship left. Right-arrow (or a right mouse movement) turns the ship right. Up-arrow (or right-mouse button) thrusts, and Spacebar (or left-mouse button) fires. In addition, there is also a function for the Down-arrow which toggles on and off “auto-pilot”. This effectively turns on and off AI control of the ship. Really, this function should probably be disabled, but it remains there for everyone’s amusement. Hitting Spacebar from the instruction screen brings you back to the logo screen.

From the logo screen, hitting Spacebar (or left-mouse) starts the game. The first chapter screen appears letting you know what’s going on. There, you can see a placeholder area for a splash screen and some text. In this chapter screen and all others you can Spacebar to skip to the following level, or just wait for it to pass.

When a level starts, a blank screen showing the level number appears for awhile, followed by the actual level setup. As the game is currently constructed there are fixed numbers of particular game objects and these and the player are spawned randomly into the level. On the upper left is an indicator of the number of ships the player has. At the upper right is the health (up to 100) of the player, color-coded (green, yellow, red) to indicate how badly the player is damaged. In the upper-center is the player’s current score, and the space left behind at the top is used to indicate when triple- or rapid-fire are active. At first, for a brief moment, the screen is frozen and all game objects besides your ship are grayed out. This allows you to get your bearings before the action begins.

Twice during a level (if the player is around long enough), a random powerup is deployed on the level in the form of a pink capsule that spins and floats around. The interval at which this is deployed shortens as the levels advance. The most likely powerup to be received is the triple-fire powerup. The next most likely is rapid-fire. Finally, there is a chance of picking up a powerup that fully repairs Valiant’s hull. Powerups are destroyed if they hit other game objects, so grab them quickly.

After you’ve defeated all of the enemies on a level, the game proceeds to the next level, possibly showing a chapter screen first, and on certain level screens rewarding you with an extra life. If you die, your ship is respawned randomly on the level and there is the brief graying out and freeze to allow the player to see where they’ve been dropped before the fray resumes.

At any point at all during the game, you can hit Escape to quit. There is no checking to verify if you really meant to quit, so don’t say no-one warned you.

If you’re reading this document, you’re probably a coder, so you probably want to know the numerous cheats and debug features that are available. They are:

· F1 toggles triple-fire.

· F2 toggles rapid-fire.

· F3 toggles God mode.

· F4 skips to the next level.

· F5 pauses the game.

· F6 toggles on/off debug display for game objects. This and the following feature were developed because, believe it or not, I had no way to use a debugger on Swarmongers. Having no auxiliary machine, I had no facilities for remote debugging, and I did not know how to make a windowed-mode version of the game (and admittedly still don’t know). Therefore, I developed a nifty way of debugging game state. When F6 is hit, the mouse will appear. Move the mouse over any game entities and lots of text will pop up showing you the stats and state for that object. (Naturally, pausing the game first, helps.) This capability proved crucial in my debugging the game. You can learn a lot about what kind of stats game objects have by just pausing the game and browsing their states in this mode.

· F7 toggles on/off a debug log window which displays messages. A small window pops up in the middle of the screen which is like a console window only it just logs messages rather than allowing the player to type anything. This is good for when you want to notice when unusual things happen in the game.

· F8 brings up a color palette and a mouse cursor. Move the mouse cursor over a color and its number value will be displayed at the bottom of the screen. I used this to pick out colors for the various game objects. Hitting F8 again dispels this screen, but things get kind of dicey for awhile after you’re in play mode again.

That’s basically everything from the player’s perspective. In order to really get under the surface it’s time to start looking at code. The following section is there to provide a road-map for this endeavor.

3 Code Structure and Functionality

The structure of Swarmongers can be thought of as having two layers. The lower layer consists of WinMain() and the GPDUMB engine which is taken right out of “Windows Game Programming for Dummies” (and completely documented in chapters 12 and 16).

The upper layer is the vector engine and game logic which is specific to Swarmongers.

3.1 WinMain() and GPDUMB

The main.cpp file contains the WinMain() and WindowProc() functions that are the heart of any Windows application. It also contains a set of global variables for objects such as the game itself, the field of stars, and an object for managing sounds. The key global object is theGame which is of class type Game. The Windows update loop calls its MainLoop() method during each frame. The constructor and destructor for Game are used to do all initialization and cleanup, respectively, of the game.

Code inside Game and other classes makes calls to GPDUMB. GPDUMB code basically provides a set of routines which interface with the lower-level DirectDraw, DirectInput, and DirectSound calls. There are also routines for reading in .wav files, .bmp files and other file formats. Functionality even exists for sprites (BOBs in the code and the book) but this feature is unused in Swarmongers.

The code for the GPDUMB engine is entirely contained in GPDUMB_includes.h, Gpdumb1.h and .cpp, and Gpdumb2.h and .cpp. These files were taken practically without modification from “Windows Game Programming for Dummies” (from the CD that comes with the book), and Chapters 12 and 16 should be referenced to read in detail about the various features provided by this engine. GPDUMB functionality is basically implemented by a set of C-style function-calls which means there are no classes, per se, in the GPDUMB engine, and you need to understand the globals and function calls to use GPDUMB.

3.2 Swarmongers Game Logic

The upper layer will be the focus of this document, as it is where my efforts lay in creating the game and also where the meat of the game is. As this layer was designed in an object-oriented fashion, I’ll begin by laying out the class hierarchy of the game and describing the classes in a general manner. Then, I’ll outline the main aspects of code-flow which is centered around the methods of the Game class. Finally, I’ll give an overview of how the AI works.

3.2.1 Class Hierarchy Tree

Game

GameObject

PointObject

PlayerShot

PlasmaAShot

PlasmaBShot

PlasmaCShot

PointExplosion

VectObject

Asteroid

Whirlakill

PowerUp

PlasmaDShot

DreadnaughtShot

AIObject

BuzzBomb

Marauder

Hellhornet

Hornetnest

Dreadnaught

PlasmaTurret

Stinger

Warhawk

Valiant

RogueWarhawk

GameScreen

StarField

SoundManager

ActionEventManager

DebugLog

Vect

3.2.2 Class Descriptions

The heart of a game of Swarmongers is the Game class. This class encapsulates all of the game-wide attributes and the general flow of a particular game of Swarmongers. MainLoop() is the “method-in-chief”, if you will. It is called once for every frame of the game. There are a number of private XLoop() methods that each correspond to a mode of execution of the game.

Most game entities fall within the GameObject class. Generally, anything that moves around on the screen is a GameObject, including the player’s ship, enemies, shot particles, and obstacles. GameObject has two main children: PointObject and VectObject. PointObject objects are game objects that are made of points; VectObject objects are game objects that are made of vectors (i.e., lines). PointObject objects include the player’s shots (PlayerShot), explosions (PointExplosion), and various shots of other ships (PlasmaAShot, PlasmaBShot, PlasmaCShot). VectObject objects include the player powerups (PowerUp), projectiles (PlasmaDShot, DreadnaughtShot), dumb obstacles (Asteroid, Whirlakill), and ships with AI (AIObject). AIObject encapsulates all ships, hostile (BuzzBomb, Marauder, Hellhornet, Hornetnest, Dreadnaught, PlasmaTurret, RogueWarhawk), friendly (Stinger, Warhawk), and yourself (Valiant). A Game object owns any GameObject objects that are in existence at any moment of the game. Of most obvious importance in GameObject are the Update() and Draw() methods. The first of these updates the current state of the object. The second draws (or renders) the object.

In addition to the Game object that exists during any run of the game and its population of GameObject objects, there are a few other classes. GameScreen encapsulates the dimensions of the game screen as well as providing methods for outputting text to that screen. StarField encapsulates the static field of stars that is displayed on the background of every level. SoundManager provides a set of methods for playing the various .wav files the game uses. ActionEventManager manages the keyboard and mouse inputs that control the game. DebugLog provides a way to for people modifying or debugging the code to post messages which will appear if the F7 feature is on (see Section 2). Finally Vect encapsulates the data and operations of vector math as used in Swarmongers.

3.2.3 The Life Cycle of Game Execution

For most practical purposes, a person wanting to trace through the flow of Swarmongers can ignore the many low level functions in GPDUMB and content themselves with tracing through the Game class (especially Game::MainLoop()). Of course, remote debugging will be necessary to do this unless you modify GPDUMB to allow the game to run in a windowed mode.

3.2.3.1 Initialization

In main.cpp, there is a global variable (theGame) of type Game. A new is done on this in WinMain() before the frame loop. Of course, this calls the Game constructor. The flow of this function is well-commented in the code. There is a variable defined in Game.h of type GameMode called (strangely enough) mode. This determines which XLoop() method gets called by Game::MainLoop() during any given frame. This is set initially to IntroMode which is the mode for the game introduction “cinematics”.

3.2.3.2 Frame Update

Game::MainLoop() gets called during each frame. Its flow runs as follows.

· If the next-level key is pressed, set the mode to IntermissionMode and go to the next level. The name of the variable (restart_game) and the comments in the code are wrong. (I was just too lazy to change the variable name after its function changed.)

· Tell Windows it’s time to exit if Escape is pressed.

· Get the current time and calculate the duration of the last frame using it.

· Increment the elapsed time using the last frame duration. This elapsed time gets reset usually when the mode is changed and always before new levels.

· Increment the total frame count and frame count timer which are used to calculate the current frames-per-second (FPS) value.

· Clear the back-buffer drawing surface.

· Read keyboard, mouse, and joystick input data.

· Handle the case where F8 is released (after being hit). If we’re in PlayMode it means switching to PaletteMode and putting the mouse cursor up. If we’re in PaletteMode, it means getting rid of the mouse cursor and switching back to PlayMode.

· Do the XLoop() method for whichever mode we’re in. These methods will update any GameObject objects being kept track of and then draw them to the back-buffer. During game-play, this “action” happens in PlayModeLoop().

· If the debug log (F7 feature) is up, display it over everything else.

· Blit the back-buffer to the primary buffer using DD_Flip().

· Update the GameScreen object. All this does is makes sure that the current text line for the screen is set to 1 which is the line where score and status are written.

· Update the ActionEventManager object. This updates any memory the code needs to have of previous keyboard and mouse state.

· Update the SoundManager object. This updates any active countdown timers for thrusting sounds, stopping the sounds if the respective timers expire. Then the volumes of files are reset if a currently playing track ends.

· Remember the current frame time for the next frame.

There are a number of modes that the game can be in and it would be useful to give an overview of each of the corresponding XLoop() methods for these.

PlayMode

This is the main mode of the game, the mode in which the player is playing a level. Its corresponding method, PlayModeLoop(), has the following flow.

· Check for and respond to cheat and debug keys.

· Check for victory conditions by calling CheckVictory() and switch to the appropriate mode if the level is won. This generally means switching to IntermissionMode after setting the next level as the current level. However, at certain levels ChapterMode is entered instead, and after the last level, WonMode is entered.

· Deal with the case of the player dying. If the player dies, we want to wait until any children of the player (e.g. the explosion and shots) are out of existence and then we want to respawn the player as appropriate (randomly in all levels but the last one). Then the game moves to IntermissionMode.

· Execute the code for LevelCycle(). This does the bulk of the logic for updating and rendering GameObject objects during level play.

· Draw the score and status indicators at the top of the screen.

The very heart of game-play logic resides in LevelCycle(). This is the method of Game that updates all of the GameObject objects that currently exists and then draws (i.e., renders) them. This really is the basic pattern in nearly any real-time video game: on each frame you update the status of all your game entity objects and then you render them in whatever view is appropriate. The same pattern holds for 3D first-person shooters as well as simple 2D games such as this one. In 3D games, the game objects and the world would have three dimensions of representation and another coordinate to represent the height position in the world. Then there would be a camera somewhere in that world and the rendering code would execute all of the complex math to convert the camera position and placement of objects to the 2D window that the player has on the game world. The person writing the game-play logic (including the AI) can be insulated from the highly complex and detailed logic of rendering the game scene, and the person whose strength is graphics coding can focus on the rendering engine.

The flow of LevelCycle() is as follows.

1. If we are paused, skip to step 7.

2. Check for whether it’s time to spawn a powerup. If it is, spawn one; otherwise, count down the timer for powerup spawning.

3. Update all of the detects of all of the AIObject game objects. Section 3.2.4 will discuss this in more detail since it’s an AI feature. Basically, though, each ship clears all of its detects and looks in its field of vision anew to create new detects.

4. Update the game’s star field. The only reason this is called is that the star field as a whole might have a velocity. Currently, this is used in the game intro “cinematics”. StarField::Update() updates the positions of all of the stars according to that velocity.

5. Update all of the GameObject objects. This includes making them think and move.

6. Handle any resulting collisions by calling HandleCollision() for each possible pair of GameObject objects. This generates all results of collisions between game objects and will apply damage and changes in velocity as appropriate. Physically realistic equations for elastic collision resolution are used with each object having a mass value. Look in Game::HandleCollision() for details.

7. Count down the pause timer if it’s on.

8. If the debug display (F6 option) is on, look at where the mouse cursor is and if it’s on top of a game object, call that object’s dbg_display() method which causes it to display its stats.

9. Lock the back buffer. ACTUNG!: Note that for those of you new to DirectX, you never want to try to set a break-point between a DirectDraw buffer lock and unlock (at least not if you’re debugging locally). This is because DirectX has exclusively seized control of the video display from Windows and you won’t be able to see any debugging output as a result. Of course, this is a moot point without a windowed version of the code to allow debugging in the first place. Another thing you have to watch for, however, as a coder, is that you avoid trying to draw objects so that they run outside the screen. If you do this, it is almost guaranteed that you’ll get a lock-up and have to reboot your machine and if you’ve not saved your workspace in Visual C++, you may be in for a nasty surprise when you restart Visual Studio.

10. If we’re in a pre-level pause, draw the star field and all GameObject objects except the Valiant in “ghost”-grey. Otherwise, draw the star field and GameObject objects normally. Both the StarField object and all GameObject objects have Draw() methods that are called. These have safety checks to make sure objects don’t get drawn off the screen.

11. Unlock the back buffer.

12. Display a message on the screen if an attempt was made to draw off the screen.

IntroMode

This is the mode where the “cinematic” intro is played. The behavior of IntroModeLoop() is fairly intricate, but very generally, the elapsed time is used to cue events that happen during the hard-scripted intro. When Spacebar is hit or the intro has run its course, the game goes into AttractMode. It should be noted that most of the execution cases of this method call LevelCycle().

AttractMode

This mode is for displaying the game logo. From this mode, Spacebar (or a left-mouse click) or Enter switch the game into the ChapterMode or InstructMode modes, respectively. When the Spacebar is pressed, the current level and number of ships are reset to the appropriate number (3) for the start of a game. ChapterMode is entered instead of PlayMode because we want to display the first part of the story.

InstructMode

InstructMode is the mode for the instructions page. When Spacebar (or left-mouse click) is hit, the game switches back to AttractMode.

ChapterMode

This is the mode in which the chapter text (and splash art) is displayed. Which chapter text is displayed depends on the level we’re about to run. Once the player skips this or 20 seconds have elapsed, the game goes into IntermissionMode.

IntermissionMode

IntermissionMode is the mode where the screen is blank and text is shown at the center. An intermission screen appears before any level is begun and also after the player loses a ship. If the player hasn’t lost their last life, the next mode becomes PlayMode. Otherwise, the mode reverts to AttractMode.

WonMode

This mode shows the winning epilogue “chapter”. When this finishes, the game reverts to the AttractMode mode.

PaletteMode

This mode is the F8 mode which is used for getting the integral value for a color. It is a tool for the coder who is creating new GameObject objects.

3.2.3.2 Clean-up

After the frame-loop in WinMain() is broken out of by hitting Escape, a delete is done on theGame which, of course, calls the destructor for Game. The flow of this function is well-commented in the code.

3.2.4 Artificial Intelligence Architecture

The AI for Swarmongers is a simple finite state machine (FSM) based architecture. There are essentially three components to the Swarmongers AI architecture: behaviors, perception, and plans.

3.2.4.1 Behaviors

In designing a video-game AI, the first question you generally have to ask is: what kinds of behaviors do I want AI-controlled game entities to have at their disposal? The next question is how to parameterize these behaviors. In a real-time action game such as Swarmongers (or a 3D first-person shooter) it is generally a good strategy to mimic the player controls and treat the player’s ship as another kind of AI entity whose behavior is to respond to player keystrokes. This allows such niceties as being able to “test-drive” enemies by avataring them (i.e., placing them under player control), and being able have your game entities be either player- or computer-controlled (i.e. “bots”) which is a must for modern multiplayer games. Swarmongers follows this decision by providing a few simple behaviors. Each behavior has a simple function in AIObject that applies whatever necessary changes need to be made to the game object or to the environment as a result of AI or player actions.

Spin

This behavior turns the AI object left or right, depending on the parameter passed to AIObject::Spin().

Steer

This behavior turns the AI object left or right towards a target point. There are two AIObject::Steer() functions (overloaded) that allow you to select that point.

MainThrust

This thrusts the AI object forward. AIObject::MainThrust() is the method for this.

LeftThrust

This makes the AI object side-thrust so that it moves left. AIObject::LeftThrust() does this.

RightThrust

This makes the AI object side-thrust so that it moves left. AIObject::RightThrust() does this.

FireFrontWeapon

This fires the AI object’s weapon. AIObject::FireFrontWeapon() does this.

As you can see, all of the behaviors except Steer are exactly equivalent to keypresses that the player uses to control their ship. Another characteristic that is common to all of the behaviors is that they do not have any memory state. This is key to any game AI I’ve developed. The group of behaviors forms a set of action primitives that, when used, allow all possible AI (or player) behavior. They are the blind motor procedures that an AI entity has at its disposal (though Steer() fits somewhat uneasily with that way of thinking). On any given frame, none, one or more of these behaviors is called.

3.2.4.2 Perception

Once the set of behavior primitives has been decided upon, the next question is: how does the AI know what behaviors to fire off on any given frame? Well, how does game AI “know” anything? AI-controlled game entities need to have the faculty of perception, the ability to isolate and identify important phenomena in their environment. In Swarmongers, this means that AI ships need to be able to see and identify other game objects that are on the map during any given frame.

In Swarmongers, I put a limit on the “seeing” ability of AI’s by specifying an arc-width and a sight distance. This is the AI’s field of vision (FOV). Perception is encapsulated in an array of (up to 20) detects. Before most game object updating is done, each AIObject clears all of its detects using AIObject::ClearDetects() and checks for the detection of all other GameObject objects using AIObject::AddPossibleDetect(). AddPossibleDetect() determines whether the game object passed in as a parameter is in the AI’s FOV. If it is, then the game object’s type, ID number, relative bearing, range, and location and velocity vectors are remembered. As it turns out, this is all the information AI-controlled ships need in Swarmongers to do all kinds of very responsive things.

3.2.4.3 Plans

Once you’ve decided on behavior primitives and necessary perception abilities, the question then becomes how to bridge the two of these. There are certainly many options, but a common option in games is to use a finite state machine (FSM) or a plan engine. Swarmongers uses a very simple plan engine which is essentially an FSM with an extra state-stack for memory.

A typical FSM consists of a set of states connected by transitions. Each state runs a particular output or pattern of outputs and then, depending on what is present in the input, either switches to another state, or remains in that state for the next time interval (or game-frame in our case). In a very simple game AI (simpler than Swarmongers), a ship might have 2 or 3 moving/firing patterns. Each of these would be assigned to a state. States would change, then, either if some special event happened on the world (such as the player moving across the ship’s field of fire, for example), or at random at certain intervals of time. (You can imagine an enemy that just runs one pattern for 10 seconds, then randomly chooses the next pattern, and runs with it for 10 seconds.)

In Swarmongers, each of these states becomes a plan. For example FighterAssault is a plan state for most enemies that move and shoot at the player. The behaviors fired off by this state depend on input gathered from the perceptions of the current frame. Note that there are functions in AIObject (for example, LeftCollisionThreat()) that extract information from the raw detection data that gets recreated every frame. The next state the AI is in also depends on the same perceptions. There is a default AI state that the AI goes into at the beginning and from there, the methods of the plan states themselves decide what states follow.

While a simple FSM state = plan architecture would have allowed most of the important behavior in Swarmongers, there is a weakness to this approach. When we think of plans in real life, it is typically the case that we need to keep track of our progress on our plans somehow. That is, plans often have memory associated with them. Simple FSM states lack this kind of internal memory, so in order to implement a multi-step plan, you would have to set up potentially two or more states for that plan and carefully implement the transitions between those states to allow the memory to be implemented. This would throw off the convenient one-to-one correspondence of plans and states. Also, there may be cases where you have to essentially duplicate the functionality of states because you might want several plans to share some of the same subgoal steps.

One solution to this problem would be to add variables (or structs of variables) to each plan state to act as plan memory. (This is precisely what I did for my work on Combat.) However, the solution I decided upon for Swarmongers was to have a state stack. Plan state methods are able to call each other, so it is possible to have composite plans. But how do you deal with a situation where you want to have a plan switch temporarily to a new state to resolve a sub-problem and then go on with the old state once the sub-problem is solved? A stack allows this. A plan state can use AIObject::PushAIState() to place a subgoal-solving plan on the “top” and that new plan can then call AIObject::PopAIState() when it’s done. An example of this in action is in the FighterAssault plan. If there is a threatened collision in the left part of the AI’s FOV, we want to switch to a plan to maneuver to the right. When this plan is done, we want to go back to FighterAssault again. In addition to the current state, Swarmongers allows there to be a stack of up to 5 plan states. Generally, though, the code only uses one level of this stack.

It remains to list the plan states that are currently implemented in Swarmongers. Each plan state (except DoNothing and GoToDefaultState) has a corresponding method in AIObject called XUpdate() where X is the plan name.

DoNothing

The AIObject sits idle (or drifts, if it already has some velocity).

GoToDefaultState

On the next frame, the AIObject will be in its default state. The constructor for the AIObject in question sets what that is.

Avatar

The AIObject will respond to the player controls.

RamNearestFoe

Turn towards the nearest enemy threat and thrust forward. If no enemy threat is present, spin in place (hopefully, so that an enemy eventually falls into our FOV).

SmartRamNearestFoe

Calls RamNearestFoe if there are no collision threats. If there are, then DodgeLeft or DodgeRight are called.

TurretCamp

Turn towards the nearest enemy threat and fire. If no enemy threat is present, spin in place.

FighterAssault

If we are threatened with a collision with something, execute ManeuverLeft or ManeuverRight. Otherwise, turn towards the nearest enemy. Then 30% of the time, provided there aren’t any friendlies in are field of fire (FOF) we fire. 10% of the time we move forward. If no enemy threat is present, spin in place.

Explore

Repeatedly move forward for a set duration and then randomly turn left or right.

SmartExplore

Calls Explore if there are no collision threats, but if there are it uses DodgeLeft or DodgeRight.

FollowNearestFriend

Try to follow the nearest friend in our FOV. If there are none there, spin in place looking for one. DodgeLeft or DodgeRight are used to avoid collisions.

ManeuverLeft

Turn left and thrust forward, effectively arcing to the left. A variable called state_timer is used to limit the time of the maneuver.

ManeuverRight

Turn left and thrust forward, effectively arcing to the right. state_timer is used to limit the duration of the maneuver.

DodgeLeft

Apply side thrust to move to the left. state_timer is used to limit the duration of the thrust.

DodgeRight

Apply side thrust to move to the right. state_timer is used to limit the duration of the thrust.

PressForward

Apply forward thrust. state_timer is used to limit the duration of the thrust.

These are very simple plans, indeed, and exhibit an intelligence that could be regarded at best to be insect-level, but one of the secrets of gaming AI is that you generally don’t need to model all of the vast intricacies of human thought. You merely need to be able to create “bots” that behave in ways which provide fun and challenge for the people who will be playing your games. In a retro-style game like Swarmongers, not a lot of modeling of human behavior needs to be done. In first-person shooters or in other more advanced games where characterization—meaning characterization in a literary sense—is a more important aspect of the game, more elaborate modeling can be done on emotional/mental state. (A good deal more of this kind of modeling was done by me on Scorched Worlds.) The overall principle in game AI is to model those elements of human behavior and character that provide the desired play experience. Until the day when we have true HAL9000-esque general AI, gaming AI coding will continue to be a toyshop tinker’s art where the AI designer uses their own time-tested tricks and techniques as well as some well-known algorithms in the industry (such as A* for pathfinding) to handcraft bot foes and friends for the enjoyment of gamers.

4 Suggested Improvements

As mentioned in the introduction, there are many improvements that could be made to this game and features that I’d been planning.

· There aren’t any routines for text file I/O. A class for reading text file parameters should be created. This would be useful for many of the following suggestions.

· There should be a high-score page along with a means of entering your name on it.

· The definitions of levels, chapter text, and game object definitions should reside in text files rather than being hard-coded. This way, game parameters can be tuned without having to recompile the code (which is especially handy for non-coder testers).

· As nice as the current debugging features are, it would probably be even nicer to have a windowed version of the code so that the Visual Studio debugger could be used. There may be a feature in GPDUMB to allow this but at the time I wasn’t aware of it.

· One of the features that was planned but not implemented was to have waves of enemies spawn in at certain intervals rather than having all of the enemies appear in the beginning of the level. Basically, they would teleport in either in random places or on the edge of the screen. This would have allowed the experience of playing a level to be drawn out more. As it is, a level tends to zip by.

· I wanted to enlarge the canvas of the game by expanding the size of the game world and using a moveable camera/viewport centered about the Valiant. This would have allowed larger and more elaborate missions to be developed.

· Another feature I wanted to add was hierarchical enemies. This would have been good for large boss-enemies with multiple turrets.

· SoundManager’s code is kind of unwieldy to maintain. In particular, it is stupid to have play methods for each kind of audible game action. A simple Play() method which passes in the name of the .wav file would have sufficed. Sound file names should reside in config files.

· There should probably be some sort of check if the player hits Escape to determine if they really want to quit.

· For a better artistic feel, it would probably be best to replace the vector game objects with sprites. GPDUMB provides some functionality for these through “BOB”s. (See Windows Game Programming for Dummies.)

5 Acknowledgements

For assisting me in my efforts, special thanks go to…

· The entire MLP team for play-testing, design suggestions, and ideas.

· Mark Sachs for the inspiration and pattern set up by his port of Star Castle.

· Andre LaMothe for his wonderful introductory PC game programming book “Windows Game Programming for Dummies”.

· Rob Reed for the cool game logo.

· Duncan McPherson for the level music.

· Franz Liszt, and Dmitri Shostakovich for the intro and chapter start music, respectively. For the curious, the start of Liszt’s “Dante Symphony” is used in the intro and the second movement of the Shostakovich’s 10th Symphony.

