
 

 

 

 

 

A NEUROCOMPUTATIONAL MODEL OF THE FUNCTIONAL ROLE OF 

DOPAMINE IN STIMULUS-RESPONSE TASK LEARNING AND PERFORMANCE 

 

 

 

 

 

 

 

 

 

 

 

 

 

George L. Chadderdon III 

 

 

 

 

 

 

 

 

 

 

 

 

Submitted to the faculty of the University Graduate School 

In partial fulfillment of the requirements 

For the degree 

Doctor of Philosophy 

In the Department of Psychological and Brain Sciences 

And the Cognitive Science Program of 

Indiana University 

March, 2009 



ii  

 

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the 

requirements for the degree of Doctor of Philosophy. 

 

Doctoral Committee    __________________________________ 

 

      Olaf Sporns, Ph.D. 

 

 

      __________________________________ 

 

      Joshua Brown, Ph.D. 

 

 

      __________________________________ 

 

      James Townsend, Ph.D. 

 

 

      __________________________________ 

 

      Peter Todd, Ph.D. 

 

 

February 27, 2009 

  



iii  

 

Acknowledgements 

 As the long, arduous process of preparing this doctoral thesis draws to a close, I 

am grateful for the support, ideas, patience, and encouragement of my committee, the 

university, and my family.  Above all, I am grateful to my advisor Olaf Sporns for being 

patient over the years, and for providing, for me, an ideal balance of freedom to pursue 

my research interests with generous guidance, advice, and critical feedback.  I would also 

like to thank Josh Brown: for letting me audit his relevant and useful class on cognitive 

control in the brain, for joining my committee at the last minute, and for considerable 

time and contribution of ideas during the stages of development of the model in this 

dissertation.  I would also like to thank Jim Townsend for his continued support and 

encouragement, and Peter Todd who joined my committee when one of its previous 

members left IU.  Much of my broad understanding of the gestalt organization of the 

brain I owe to Gary Lucas and his useful course co-taught with Bill Timberlake.  My 

experience at Indiana University has been a positive one, and I am grateful for the 

friendly and intellectually stimulating environment provided by the Bloomington campus. 

 To my parents, I am grateful always for their moral and financial support, and for 

their enthusiastic encouragement of my pursuit of my many diverse interests. 

 Finally, I would like to thank the National Institute of Mental Health and IUôs 

Psychological and Brain Sciences department and Cognitive Science program for their 

financial support during my stay at IU.  For two years, I was funded as a fellow on the 

NIMH Math Modeling Training Grant T32MH019879-11.  Over two summers, I was 

supported under an IU Cognitive Science Program Summer Research Fellowship. 

 

 



iv 

 

George L. Chadderdon III  

A NEUROCOMPUTATIONAL MODEL OF THE FUNCTIONAL ROLE OF 

DOPAMINE IN STIMULUS-RESPONSE TASK LEARNING AND PERFORMANCE 

The neuromodulatory neurotransmitter dopamine (DA) plays a complex, but central role 

in the learning and performance of stimulus-response (S-R) behaviors.  Studies have 

implicated DAôs role in reward-driven learning and also its role in setting the overall 

level of vigor or frequency of response.  Here, a neurocomputational model is developed 

which models DAôs influence on a set of brain regions believed to be involved in the 

learning and execution of S-R tasks, including frontal cortex, basal ganglia, and cingulate 

cortex.  An óactorô component of the model is trained, using óbabbleô (random behavior 

selection) and ócriticô (rewarding and punishing) components of the model, to perform 

acceptance/rejection responses upon presentation of color stimuli in the context of 

recently presented auditory tones.  The model behaves like an autonomous organism 

learning (and relearning) through ótrial-and-errorô.  The focus of the study, the impact of 

hypo- and hyper-normal DA activity on this model, is investigated by three different 

dopaminergic pathwaysðtwo striatal and one prefrontal corticalðbeing manipulated 

independently during the learning and performance of the color response task.  Hypo-DA 

conditions, analogous to Parkinsonism, cause slowing and reduction of frequency of 

learned responses, and, at extremes, degrade the learning (either initial or reversal) of the 

task.  Hyper-DA conditions, analogous to psychostimulant effects, cause more rapid 

response times, but also can lead to perseveration of incorrect learning of response on the 

task.  The presence of these effects often depends on which DA-ergic pathway is 

manipulated, however, which has implications for interpretation of the pharmacological 
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experimental data.  The proposed model embodies an integrative theory of dopamine 

function which suggests that the base rate of DA cell activity encodes the overall 

óactivity-oriented motivationô of the organism, with hunger and/or expectation of reward 

driving both response vigor and tendency to generate an explorative óbabbleô response.  

This more ótonicô feature of DA functionality coexists naturally with the more 

extensively-studied óphasicô reward-learning features.  The model may provide better 

insights on the role of DA system dysfunction in the cognitive and motivational 

symptoms of disorders such as Parkinsonism, psychostimulant abuse, ADHD, OCD, and 

schizophrenia, accounting for deficits in both learning and performance of tasks. 
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Chapter 1: Motivation and Background 

1.1 Summary of Investigation 

1.1.1 Task-Oriented Behavior Selection and Volition 

 

Production of behavior that meets survival and reproductive needs of the 

organism is the fundamental goal of all animal cognition.  Organisms in their 

environments seek to engage in behaviors which lead to rewards (e.g. food, drink, 

mating) and avoid punishments (e.g. pain, injury).  Positive outcomes (O; all 

abbreviations listed in Table 1.1) are often contingent on making a correct response (R) 

to particular stimulus (S) cues in the environment.  The essential problem of volition / 

executive control is how to most adaptivelyðmeaning most advantageously for the 

organismðselect an R from the animalôs entire repertoire of candidate behaviors. 

In addition to immediate S cues, however, the organismôs best R also tends to 

depend on the current internal state of the organism: its bodily state or the goal it is 

currently trying to accomplish (e.g. nest-building, hunting, fleeing from predators).  The 

selection of an appropriate behavior in the context of the organismôs current environment 

and internal state is the essence of adaptive decision-making.  In previous work (2008), 

the author has defined óvolitionô as ñthe capacity for adaptive decision-makingò and 

suggested that this capacity is possessed in varying degrees by organisms.  Increasing 

volition means an increasing flexibility of (and internalization of) control of behaviors. 

 In (Chadderdon, 2008), the author presents an ordinal scale intended to measure 

volition in organisms (either natural or artificial).  Levels of this scale are characterized 

by the degree of flexibility of control the organism/system has.  At a low level of volition 

are systems that have only ñhard-wiredò reflex behaviors.  Systems capable of learning 
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from experience, however, possess a higher degree of volition.  Associative learning 

allows learning of new adaptive behavior patterns and also the informational structure of 

the environment.  Possession of working memory (as will be discussed in more detail) 

confers still more flexibility, as does the faculty of long-term memory.  The ability to 

deliberate on candidate Rs and contemplate their likely Os before committing to an action 

is a feature that adds significant volitional capability to an organism.  Finally, 

environmental bootstrappingðincluding social behavior, object manipulation, symbolic 

communication, and external storage of symbolsðallows still higher levels of volition. 

Even within the same organism, however, behaviors may be subject to varying 

levels of control.  Simple ñhard-wiredò fixed stimulus-response (S-R) reflexes, such as 

spinal pain limb-withdrawal reflexes, or swallow responses, represent a low level of 

volitional control, behavior control through collections of instinctual tropisms.  

Associative learning, however, allows a higher level of volitional control because it 

allows learning of novel S-R mappings attuned to the conditions in the organismôs 

environment.  The inherent plasticity of neurons endows even evolutionarily primitive 

animals such as sea-slugs with some degree of S-R learning capacity.   

The ability to learn new S-R mappings is an important component of an animalôs 

ability to adapt to its environment.  However, there are complicating factors in how the 

world may distribute rewards that may make simple S-R learning insufficient.  First, an S 

cue that prompts an appropriate R may be transient.  For example, a predator may spot a 

prey animal only to have it disappear into hiding nearby.  It would be highly maladaptive 

for the predator to forget about the existence of the prey animal, and would be more 
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adaptive to engage some kind of searching or tracking behavior, at very least searching 

where the quarry was last seen.   

Another possible complication is that there may be a many-to-many mapping 

between particular S cues and most-adaptive Rs.  When seeing a prowling hyena, a 

monkeyôs best escape R may depend on whether there are trees around or whether they 

are out in the open.  The most adaptive R, given the immediate S, will depend on other 

cues, sometimes called discriminative stimuli (S
D
s): the location of the monkey in the 

previous example.  In a more difficult case, these cues may themselves be transient, as 

when the vocalization of a predator is heard.  These types of responding require some 

kind of internal representation to be formed and held active during the time after critical 

environmental cues have disappeared.  These are the kinds of reinforcement conditions in 

the environment that likely create the selective pressure for the development of task-

oriented behavior selection (TOBS). 

We may imagine an experiment in which a rat learns a simple S-R mapping in 

which food-pellets are always delivered after it presses a lever (R) in response to the 

onset of a light (S).  However, we could imagine making the reward contingency more 

complex by adding two auditory tones (high vs. low) which change whether the rat is 

administered a food-pellet (reward), or a footshock (punisher) in response to its lever 

press at the onset of the light.  The tones are played between blocks of light/lever trials to 

signal changes in reward contingency state in the environment.  These tones may be 

thought of as signaling for the rat two distinct tasks: PRESS-LEVER-ON-LIGHT, or 

AVOID-LEVER-ON-LIGHT.  Some form of what has been called working memory 

(Baddeley, 2003) is required for the rat to maintain a representation of the current reward 
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contingency state of the environment.  The selection of a behavior contingent on a current 

task is what is meant by TOBS (Chadderdon & Sporns, 2006).  Working memory may 

also be used to temporarily store task parameters: including information specifying 

subgoals, stimulus targets, or specific means or manner of performing the task. 

If we consider the kinds of long-range behaviors humans engage in, we see that 

TOBS is a critical component in adaptation to civilization.  For example, when we are in 

our cars, we need to have some kind of representation of our intended destination, lest we 

end up somewhere else by default.  When engaged in a sequential task such as adding 

two numbers together in our heads, we need to be able to remember what steps weôve 

completed as well as the final goal.  Generally, humans are goal-oriented creatures whose 

environment requires the kind of behavior involving the engaging and disengaging of 

task states that override default behavior. 

A laboratory example of TOBS in humans which illustrates the problem of many-

to-many S-to-best-R mappings is the Stroop task in which the subject is instructed to 

either read the text of words presented in colored ink or the color of the ink instead 

(Stroop, 1935).  If the word óblueô is written in red ink, then the correct response will 

depend on which task (READ-WORD vs. READ-COLOR) is active.  Clearly, the 

READ-WORD task is more of a default task and must be overridden in order for correct 

responses to be made, a fact which causes errors and slower performance of the READ-

COLOR task when its answers conflict with those of READ-WORD.  The ability to use 

internally maintained task context to direct behavior represents an increase in behavior 

flexibility over fixed S-R mapping.  Failure of the working memory system that would 
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allow task/goal representation would result in more óstimulus-drivenô behavior such as 

has been observed in patients with frontal-lobe damage (Miller, 2000) .   

1.1.2 Reinforcement Learning 

 

Seeing that TOBS is an important feature of animal behavior, we may wonder 

how an organism learns the particular S-R mappings for each task and the discriminative 

stimulus cues (S
D
s) that signal switching to/between the tasks.  Animals can be trained to 

perform behaviors through conditioning procedures.  Classical (Pavlovian) conditioning 

procedures (Rescorla, 1988) traditionally involved learning to associate a previously 

neutral stimulus, a conditioned stimulus (CS) with another stimulus, the unconditioned 

stimulus (US) which tends to produce a corresponding unconditioned response (UR).  

Through this association, the CS is able to trigger a conditioned response (CR).  More 

recent conceptualizations of Pavlovian learning (Rescorla, 1988, 1991) characterize it as 

stimulus-outcome (S-O) learning whereby an association is learned between one event 

(the S) and a subsequent event (the O) that it predicts/precedes.  Presumably, it is the O 

that drives the conditioned R, though some stimulus context may determine the exact 

nature of the R.  For example, a dog in the classic Pavlov experiment is learning to map a 

bell (S) to an expectation of food (O) which leads to salivation (R).   

When the O does not automatically follow the S, however, but is contingent on a 

particular R, then instrumental (operant) conditioning (Rescorla, 1991) procedures are 

used to train the subject.  For example, a rat may be required to press a lever (R) in order 

to receive a food-pellet reward (O).  Essentially, instrumental learning involves delivery 

(or omission) of rewarding and/or punishing stimuli (Os) to ñstamp inò or ñstamp outò an 

R (Thorndike, 1911), potentially in some environmental context (S).  The basic pattern is 
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as follows.  First, the subject engages spontaneously in a behavior (R) during a particular 

environmental context (S).  Then, the rewarding or punishing consequences (O) of that 

action are relayed to the subject.  According the Law of Effect (Thorndike, 1911), if a 

reward (punisher) is delivered, then the likelihood of the subject choosing that particular 

behavior in a similar environmental context is increased (decreased).  So the subject 

learns to choose Rs that maximize reward and minimize punishment.  Sutton and Barto 

(1998) have characterized reinforcement learning (a theoretical abstraction of animal 

instrumental learning) as  ñélearning what to doðhow to map situations to actionsðso 

as to maximize a numerical reward signal.ò   

Instrumental learning has been theorized to involve learning of a hierarchical S-

(R-O) mapping (Rescorla, 1991), but this dissertation investigates the neural mechanisms 

that might underlie the (conceptually more traditional) theory of S-R mappings being 

trained by the Os.  There is evidence, in fact, that some behaviors (though not as many as 

was originally believed) are cast as direct S-R mappings, rather, that are independent of 

any immediate outcome expectancy (Kirsch, Lynn, Vigorito, & Miller, 2004) .  These 

behaviors are habitual, and resistant to extinction (unlearning caused by omission of 

rewards).  Thus, the model to be offered in this dissertation may be considered a 

preliminary model of habit-learning, albeit habit learning that relies on working memory 

traces to keep track of a task state. 

It is proposed here that both fixed S-R mappings and more context-dependent 

mappings, such as would be required for TOBS, may be learned via the same learning 

mechanisms.  In essence, the main stimulus (S) and the task context (S
D
) may be 

considered a conjunctive stimulus (Sǋ) such that each stimulus/context conjunction may 
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be mapped to an R.  A neurocomputational model has been constructed that models the 

learning (and unlearning) of TOBS S-R mappings.  Rewards and punishers, respectively, 

allow learning and unlearning of stimulus/context conjunction-to-response mappings, but 

effects of extinction (omission of reward) are not modeled. 

1.1.3 Dopamine 

  

Neuromodulatory neurotransmitters such as dopamine (DA) provide a global 

mechanism by which network- and system-level neural dynamics can be altered.  

(Marder & Thirumalai, 2002) contains a broad discussion of the effects of 

neuromodulators on the intrinsic firing properties and the synaptic plasticity of neurons.  

Neuromodulators adjust the maximum conductances for particular ion channels in cells 

which can, for example, convert them from tonically inactive cells that require afferent 

input to tonically active cells or bursting cells.  Synaptic strength can also be affected by 

either pre- or post-synaptic effects of neuromodulator release.  Multiple neuromodulators 

can interact with one another leading to hard-to-predict results.  Overall, the 

computational consequences of neuromodulator effects are bewilderingly variable and 

the effects of the individual transmitters are in principle not easily disentangled.   

However, there do seem to be certain large-scale functions associated with DA in 

mammalian brains.  DA is a critical component in the circuitry allowing voluntary 

behavior, as is evidenced by the difficulty that Parkinsonôs patientsðwho suffer DA 

depletion due to death of dopaminergic cells in midbrain nucleiðhave initiating and 

rapidly executing movements (Gauntlett-Gilbert & Brown, 1998; Muller et al., 1999; 

Schultz et al., 1989).  There is evidence that heightened levels of DA, such as may be 

caused by psychostimulant (e.g. cocaine or amphetamine) use, may lead to both shorter 
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reaction times (Halliday et al., 1994; Hienz, Spear, & Bowers, 1994) and a greater degree 

of explorative activity (Carr & White, 1987; Ikemoto & Panksepp, 1999).  DA activity is 

involved with working memory maintenance (Durstewitz, Seamans, & Sejnowski, 2000; 

Sawaguchi & Goldman-Rakic, 1994; Zahrt, Taylor, Mathew, & Arnsten, 1997) which is 

a critical component of executive control.  Finally, DA seems to play a significant role in 

reinforcement learning as is evidenced both by cellular studies of how DA modulates 

synaptic plasticity (Reynolds & Wickens, 2002; Shen, Flajolet, Greengard, & Surmeier, 

2008) and by the conditions which prompt DA cell firing.  Studies suggest that DA cells 

tend to fire in response to novelty and the unexpected delivery of rewards, but their firing 

tends to be suppressed by omission of expected rewards and aversive stimuli (Schultz, 

1998, 2007; Ungless, Magill, & Bolam, 2004).  More details about the likely neural 

mechanisms underlying many of these effects will be discussed in Section 1.2.3. 

Caution is warranted when attempting to generalize about the function of any 

particular neurotransmitter such as DA, but it may be illuminating to try to integrate what 

is understood about the disparate functions DA is involved in and what is known about 

the circuitry the DA cells are a part of.  Certain generalizations can and have been made 

about neurotransmitter functions which add greatly to our intuitions about their likely 

roles in the brain.  For example, catecholamines such as norepinephrine (NE) and DA 

seem to be involved in arousal, whereas indoleamines such as serotonin (5-HT) seem to, 

generally speaking, inhibit or modulate the effects of arousal (Panksepp, 1986, 1998).   

One of the larger aims of this dissertation is to attempt to make such a 

generalization about the function of DA: namely, it proposes that DA cell base-rate 

activity correlates with an organismôs current óactivity-oriented motivationô and upon 
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this tonic signal is superimposed a phasic reinforcement signal wherein large bursts of 

activity, relative to the baseline firing, signal associative learning through reward (or 

novelty); and significant dips of activity signal associative unlearning through 

punishment.  The superposition of these signals has certain implications for predictions 

we might make about the effects of abnormal levels of DA and their effects on cognitive 

and executive function. 

Chapter 8 of Jaak Pankseppôs Affective Neuroscience (Panksepp, 1998) suggests a 

precedent for such a unified understanding of the role of DA.  Panksepp proposes that 

DA is the key neurotransmitter involved in the activation of a SEEKING affective 

system, i.e., an appetitive motivational emotional circuit involved in a generalized 

energizing of explorative and foraging behavior.  The lateral hypothalamus (LH) signals 

physiological needs such as hunger or thirst, and these trigger activation of DA cells in 

the ventral tegmental area (VTA), one of the important midbrain DA nuclei.  VTA 

activity targets areas such the ventral striatum (nucleus accumbens) and this leads to an 

increase in explorative behaviors, such as sniffing and forward locomotion in rats.  

Activation of this circuit is believed to be associated with a subjective experience of 

anticipatory excitement, rather than hedonic pleasure that would be associated with 

consumption/consummation.  Physiological needs, such as hunger, may activate this 

system, but it is also possible for the system to learn to activate in response to initially 

neutral stimulus cues, e.g. a tone preceding feeding.  Drug-cravings in humans may work 

via such a mechanism with particular environmental cues such as the sight of drug-use 

paraphernalia potentially triggering the activation of this expectancy/anticipatory 

emotional state, even after physical withdrawal has been overcome (Hyman & Malenka, 
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2001).  The SEEKING system activation is non-drive-specific: hunger, thirst, and sexual 

desire all trigger the same system, and it has been observed that activation through one 

drive (e.g. hunger) can lead to increased consummatory behaviors related to other drives 

(e.g. thirst).   

While the other major dopaminergic pathway to the basal ganglia, the substantia 

nigra-to-dorsal striatal pathway (to be discussed later) is not active in exactly the same 

circumstances as the ventral striatal pathway, the evidence regarding effects of 

Parkinsonôs suggests that DA facilitates motor activity through this pathway also, and as 

depletion of the ventral striatal pathway leads to decreased exploratory behavior (Ikemoto 

& Panksepp, 1999), depletion of dorsal striatal pathway leads to decreased performance 

of more stimulus-specific learned behaviors (Packard & Knowlton, 2002; Yin, Knowlton, 

& Balleine, 2004).  In both cases, base-rate of DA cell activity seems to correlate with a 

drive to be active, rather than inactive.  It is as if the base-rate of DA cell activity signals 

the overall need of the organism to engage in purposive, voluntary behavior rather than 

remaining quiescent.  Under this assumption, low dopamine should correlate with states 

of both affective and psychomotor sluggishness, whereas high DA states correlate with 

heightened subjective sense of excited expectancy and the motivation to ñdo somethingò 

and with physical hyperactivity.  The phasic learning signals, then, allow behaviors (Rs) 

to be associated with cues (Ss) that lead to positive outcomes (Os), and also allow S-R 

mappings that lead to negative Os to be unlearned.  Thus, the same DA cells that energize 

the organism for voluntary action provide a reinforcement learning signal for training the 

organism to perform those actions.  An interesting implication is that in the energized 

state there is a bias towards reward learning, whereas in the ódownô state there is a bias 
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towards punishment learning, a proposition that has been made by Frank and colleagues 

in their modeling (Frank & O'Reilly, 2006; Frank, Seeberger, & O'Reilly, 2004). 

 The model developed in this research attempts to formulate a preliminary 

understanding of dopamineôs role in reinforcement learning and execution of TOBS.  Of 

particular interest are the effects of too little or too much dopamine activity in the neural 

substrates of TOBS.  More details of the mechanisms of dopamine are discussed in 

Section 1.2.3, and wider implications of the theory are discussed in Section 4.1.4. 

1.1.4 Objectives and Research Questions 

 

 From the outset, the research documented in this dissertation has sought an 

explanatory computational simulation model of TOBS. Two main objectives are:   

1. Creation of a large-scale neurocomputational model of the neural mechanisms and 

pathways involved in the learning of S-R tasks;  

2. Modeling DAôs role in modulating learning and performance of S-R tasks with 

emphasis on examining the effects of DA agonism (hyper-DA) and antagonism 

(hypo-DA). 

Three research questions, essentially, are investigated: 

1. What is the neural substrate of TOBS? 

2. How are TOBS behaviors learned by this substrate? 

3. What role does the neurotransmitter DA play in the learning and performance of 

these behaviors? 

In Section 4.1, a preliminary theory, suggested by the operation of the model, will be 

offered addressing these questions. 
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1.1.5 Overview of Research Approach 

 

Understanding the neural and functional mechanisms of mammalian behavior and 

cognition is one of the larger goals of neuroscience and psychology, since much of this 

understanding may reveal the physiological and informational basis of human cognition 

and behavior.  A plethora of techniques exists for collecting relevant data including 

neuroimaging (e.g., EEG, MEG, PET, fMRI), lesion case studies, and, more recently, 

transcranial magnetic stimulation in humans; and cell recordings, lesions, and 

pharmacological manipulations in non-human animals (Gazzaniga, Ivry, & Mangun, 

2002).  Unfortunately, each of these techniques suffers from a limitation of scope or 

viewpoint.  Cell recordings provide excellent temporal resolution, but give only a sense 

of the behavior of a few sampled cells, rather than a network as a whole.  fMRI provides 

an overall collective view of brain activity, but with a relatively poor temporal resolution 

and the spatial resolution is also much coarser than the level of individual cells.  Lesions 

suggest localized correlations of damage with particular psychological and behavioral 

dysfunctions, but they may also cause disruptions by interfering with functionality of 

surrounding neural tissue.  Currently, no one empirical technique presents a complete 

enough pattern to build detailed theories of mechanism on. 

 Because of this situation, the study of brain mechanisms underlying mental 

process is still at an essentially pioneering, exploratory stage.  A vast amount of data 

exists that needs to be integrated into at least provisional theories that can provide a 

coherent explanatory model of functionality.  Theoretical neuroscience needs to construct 

schemas, and assign functions, at least tentatively, to specific anatomical areas.  These 

integrative theories, in turn, may suggest hypotheses that can be tested by the empirical 
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neuroscience methods, and may allow researchers to cross-validate findings in the 

disparate methodologies. 

Computational modeling is a theoretical method that has been effectively used in 

recent decades and continues to be a promising approach to neuroscientific inquiry 

(Arbib, Erdi, & Szentagothai, 1998; Churchland & Sejnowski, 1992; Dayan & Abbott, 

2001; O'Reilly & Munakata, 2000).  Computational simulation provides theorists with an 

excellent medium for formulating their theoretical constructs.   Unlike actual neural 

systems, neurocomputational models allow perfect information of their internal state.  

Activation and synaptic strengths during the execution of the model can be recorded for 

all neurons in the model (assuming sufficient data storage capacity) for analysis.   In 

single-cell recording or neuroimaging, by contrast, one is limited by the particular 

neurons sampled from on the one hand, and by the spatial coarseness of the measured 

aggregate activity on the other.   

Forced attention to mechanistic details is another advantage.  In order to create a 

working simulation, details of mechanism that might have been overlooked or ignored 

may need to be fleshed out, and this may provide a highly concrete structure whose 

validity can be tested quantitatively.  An additional benefit of a neurocomputational 

modeling approach is that it suggests specific mechanisms of cognition and behavior in 

artificial systems, potentially yielding significant advances in the field of artificial 

intelligence.  This specificity of implementation is expensive, perhaps, in design time and 

perhaps immediately in terms of how well the model may accurately reflect brain 

functionality, for each proposed specific mechanism adds to the likelihood of the model 

disagreeing on some points with later empirical findings.  However, these disadvantages 
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are more than offset by the fact that the specific mechanisms hypothesized may suggest 

later candidate mechanisms that are closer to the true ones.   

A good computational model may serve as a theoretical guidepost, even if it is 

wrong on some of the details.  As the field of cognitive science is in its youth, a 

proliferation of models and theories seems appropriate and useful, with the proviso that 

the theories should be considered as works in progress.  As the field matures and more 

data is assimilated, the population of theories should show some convergence.  The final 

theories in this process, the ones which hopefully explain the detailed functionality of 

brain process, seem likely to disagree in some fashion with most current models, but are 

likely to at least retain some of the elements of those theoretical constructs. 

In light of the advantages of using a neurocomputational modeling approach, this 

research has aimed to create a neurocomputational simulation model of learning and 

performance of TOBS.  The design of the model draws upon the knowledge of what is 

known about the neural pathways of executive control and reinforcement learning, the 

cellular mechanisms of learning, and DAôs role in modulating behavior and learning.  

Using this model, the dissertation attempts to formulate a preliminary theory of TOBS, 

and to explain and make predictions about effects of hypo- and hyper-DA 

pharmacological manipulations on TOBS learning and performance. 

1.2 Review of Neuroscience Literature  

 

 Before creating a model, it was first necessary to review relevant literature 

regarding neural mechanisms of executive control and reinforcement learning, and the 

role DA plays in these mechanisms.  Broadly speaking, the modeling efforts have 

focused on four regions of mammalian brain that are involved with TOBS: the frontal 
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lobe of the cerebral neocortex, the basal ganglia, the midbrain DA nuclei, and the anterior 

cingulate cortex (ACC).  The theory proposed in Section 4.1, based on the model, is 

primarily a theory of the ñdivision of laborò between these areas in mediating TOBS. 

Before discussing each of these regions in more detail, however, a summary may 

be given of the role of each of these areas proposed by the model of the dissertation.  

Frontal neocortex is the main component of the óactorô of the model, maintaining 

working memory states about present and remembered stimuli and tasks, and activating 

learned task-appropriate behaviors: i.e., performing the S-R mapping.  The midbrain 

dopamine nuclei act as a ócriticô, signaling rewarding and punishing events that train the 

actor when it performs a correct or incorrect response.  They also set of the level the 

activity-oriented motivation of the organism.  A portion of ACC monitors the overall 

satisfaction state of the organism, firing increasingly when the organism is becoming 

more frustrated with not being rewarded.  Another portion of ACC is also involved with 

initiation of random, exploratory óbabbleô behaviors when the organism is in a state of 

high activity-oriented motivation.  Finally, the basal ganglia provides a gating mechanism 

for the actor and babble pathways, with the permissiveness of the gate set by the DA-

signaled activity-oriented motivation. 

1.2.1 Frontal Neocortex  

1.2.1.1 Overall Structure and Function of Frontal Neocortex  

A decorticate animalði.e., one with its neocortex removedðis capable of 

classical and operant conditioning and able to perform complex instinctual behaviors 

such as grooming or copulation, but has difficulty learning complex discriminations, 

planning, or learning to navigate a complex environment (Kolb & Whishaw, 2003).  The 
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neocortex may be thought of as an evolutionarily later layer of the brain which allows 

increased flexibility in adapting more instinctive behaviors to novel situations, permitting 

what is generally considered ñhigherò cognitive functioning (MacLean, 1990). 

 While the posterior portions of neocortex and the temporal lobe seem to chiefly 

be involved with sensory processing and memory, the frontal cortex seems to be devoted 

to matters related to control of behavior: motor processing and executive control (Kolb & 

Whishaw, 2003; Luria, 1973).  The frontal cortex can be thought of as divided into a 

primary motor, a premotor, and a prefrontal component.   

1.2.1.2 Primary and Premotor Cortices  

Primary motor cortex (M1), located in Brodmann area (BA) 4 (see Figure 1.1 for 

BA map), synapses directly with spinal neurons and is responsible for the execution of 

simple motions (Kolb & Whishaw, 2003).  It is organized in a coarsely somatotopic 

mapping in broad face, upper limb, and lower limb regions, but there is not a one-to-one 

mapping within these regions, but evidence suggests, rather, a distributed convergence-

divergence pattern between M1 neurons and the controlled muscles within an extremity 

(Schieber, 2001). 

The premotor region of the frontal cortex consists of BA 6, with the lateral 

portion being considered the premotor cortex (PMC) and the medial portion being the 

supplementary motor area (SMA); and BA 8, whose lateral and medial portions, 

respectively, are the frontal eye fields (FEF) and supplementary eye fields (SEF) and are 

involved with execution and planning of eye-movements.  Whereas M1 is believed to be 

more associated with simple, immediate movements, PMC and SMA are more associated 

with control and coordination of movements.  PMC is believed to be involved in 
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preparation for and sensory guidance of movement (Wise, 1985).  Evidence suggests that 

the dorsal portion of PMC may be involved with translating (visually cued) working 

memory instructions into motor sequences (Ohbayashi, Ohki, & Miyashita, 2003).  For 

PMC, the emphasis seems to be on learning mappings between external cues and 

behaviors (Deiber et al., 2004; Mitz, Godschalk, & Wise, 1991).  By comparison, SMA is 

believed to be more involved with internally cued, self-paced, voluntary behaviors 

(Cunnington, Bradshaw, & Iansek, 1996; Deiber et al., 2004; Passingham, 1993). 

1.2.1.3 Prefrontal Cortex 

 There seems to be some variance in the literature on how the remaining portion of 

frontal cortex, the prefrontal cortex (PFC), is anatomically defined and subdivided (see 

(Kolb & Whishaw, 2003; Miller & Cohen, 2001; Ridderinkhof, van den Wildenberg, 

Segalowitz, & Carter, 2004) for some example schemes; see Figure 1.2 for Miller and 

Cohenôs (2001)).  One major difference is that some schemes include the anterior 

cingulate cortex (ACC), BA 24, 25, and 32, in PFC (Kolb & Whishaw, 2003; 

Ridderinkhof, van den Wildenberg et al., 2004), and others do not (Miller & Cohen, 

2001).  This dissertation will largely follow Ridderinkof and colleaguesô (2004) 

conventions.  Thus, the lateral portion of the PFC is divided up into a dorsolateral portion 

(dlPFC: BA 9 and 46), a ventrolateral portion (vlPFC: BA 44 and 45), and an inferior 

frontal junction portion (IFJ: junction of BA 8, 6, and 44).  The ventromedial portion of 

PFC, the orbitofrontal cortex (OFC) consists of BA 10 (also called the frontopolar 

cortex), BA 11, 13, 14, and 47/12.  The remaining medial portions of PFC consist of the 

dorsomedial PFC (dmPFC: medial part of BA 9), and the ACC (BA 24, 25, and 32).    
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 PFC is generally said to be involved with executive control and working memory 

(Funahashi, 2001; Funahashi, Bruce, & Goldman-Rakic, 1989; Fuster, 1973; Miller, 

2000; Miller & Cohen, 2001; Miller, Erickson, & Desimone, 1996).  For this role, it is 

advantageously centrally connected to read in a wide array of inputs, and exert an 

influence on behavior through premotor and motor outputs (see Figure 1.2).  The diverse 

inputs to PFC (Kaufer & Lewis, 1998; Kolb & Whishaw, 2003; Miller & Cohen, 2001) 

include 

¶ posterior parietal cortex (visual spatial location) 

¶ inferior temporal cortex (visual object/feature identity) 

¶ superior temporal gyrus (auditory information) 

¶ caudal parietal lobe (somatosensation) 

¶ gustatory cortex in insula 

¶ olfactory regions of the pyriform cortex 

¶ rostral superior temporal sulcus (multimodal representations, maybe semantic 

memory) 

¶ hippocampus (episodic and semantic memory) 

¶ amygdala (emotional and internal drive information). 

In addition, PFC outputs to secondary motor areas, which means that, because of 

reciprocal connections, the secondary motor areas can inform the PFC of ongoing motor 

plans.  So PFC is well-placed to represent abstractions of conjunctions of stimuli, internal 

state, recalled declarative memory traces, and ongoing motor behavior.   

OFC is involved with context-dependent mapping of stimuli to reinforcements (S-

O learning), and so allows the organism to better control reward- and punishment-related 
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behavior according to the current environmental context (Rolls, 1999).  Of greater 

interest in this dissertation, however, are the more lateral components of PFC (dlPFC and 

vlPFC) for these receive visual and auditory information from the parietal and temporal 

lobes (see Figure 1.2).  (ACCôs role will be treated separately in Section 1.2.4.) 

PFC cellular activity is believed to be involved with the online (i.e. through 

working memory activation) representation of abstract rules (Miller & Cohen, 2001; 

Wallis, Anderson, & Miller, 2001) and Rougier and colleagues (Rougier, Noelle, Braver, 

Cohen, & O'Reilly, 2005) have developed a reinforcement learning model where PFC 

cells learn rules for which stimulus feature to attend to, and these, through top-down 

activation, bias the activation in the posterior cortex-to-motor output pathway of the 

model.  It is an example of what Miller and Cohen (2001) have suggested is the 

fundamental mechanism of PFC influence: delay (i.e., working memory) activity in PFC 

cells, through top-down feedback connections to other areas of brain, including the 

posterior cortex and secondary motor areas, adds a biasing activation that temporarily 

changes the input-output mapping.  Working memory keeps track of changing cognitive 

context state and biases the ordinarily more automatic input-output pathways, so that, for 

example, in the Stroop task, the color-reading instruction may bias the input-output 

pathways temporarily to facilitate the correct responses instead of the default word-

reading responses. 

1.2.2 Basal Ganglia 

1.2.2.1 Basal Ganglia as Crucial Area for Behavioral Organization  

Beneath the neocortex lie evolutionarily older regions of brain that are critical to 

mammalian behavior, both instinctual and learned.  The basal ganglia (BG; see Figure 
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1.3) are a set of structures that are critically involved with motor control in vertebrates 

(Grillner, Hellgren, Ménard, Saitoh, & Wikström, 2005; Redgrave, Prescott, & Gurney, 

1999a), even ones as primitive as lampreys (Grillner, 2003).  Diencephalic animalsð

those deprived of both neocortex and basal ganglia, but retaining the diencephalon, 

including thalamus and hypothalamusðexhibit affective displays and responses to 

stimuli, and hyperactivity, including hyperactivity in locomotion, and can be fed with 

effort, but generally their behavior is aimless and uncoordinated (Kolb & Whishaw, 

2003).  Decorticate animals with basal ganglia intact, however, are able to learn to 

crudely forage and link adaptive behaviors together into sequences.  Paul MacLean 

(1990) in his triune brain theory regarded the BG as the chief component of the óreptilian 

brainô, more fundamental than the limbic system areas that are involved in mammalian 

emotion.  Panksepp (1998, p. 70) quotes an early neurophilosopher (unspecified) as 

saying, ñthe royal road to the soul goes through the corpus striatum.ò   The BG seems to 

be important both for the execution of instinctual, stereotypic fixed action patterns 

(Berridge, Aldridge, Houchard, & Zhuang, 2005; Greenberg, 2003), and for learned 

habitual behaviors (Graybiel, 1998; Packard & Knowlton, 2002). 

1.2.2.2 Action Selection and the Braking Release Mechanism 

The BG have been implicated in many functions, but one influential theory that 

seems to explain the generality of basal ganglia function is that it is involved in action 

selection: ñ[the selection of] some actions/motor programmes at the expense of othersò 

(Redgrave et al., 1999a) so that conflicts are resolved between systems competing for the 

same output resource, as for example, when an organism has cues simultaneously to 

perform arm movements in different directions.  The basal ganglia doesnôt operate 
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through selective excitation of behavior, but rather seems to work through a peculiar 

ñselective braking releaseò mechanism (Gurney, Prescott, & Redgrave, 2001; Mink, 

1996; Wichmann & DeLong, 1996).   Mink (1996) expresses the idea as follows: ñThe 

hypothesis states that the basal ganglia do not generate movements.  Instead, when 

voluntary movement is generated by cerebral cortical and cerebellar mechanisms, the 

basal ganglia act broadly to inhibit competing motor mechanisms that would otherwise 

interfere with the desired movement.  Simultaneously, inhibition is removed focally from 

the desired motor mechanisms to allow that movement to proceed.ò 

Figure 1.4, borrowed from (Gurney et al., 2001), summarizes a possible 

anatomical circuit implementing the action selection described above.  Inputs to the basal 

ganglia such as the cortex or limbic areas excite the input area of the BG, the striatum 

(caudate nucleus and putamen and ventral striatum).  The main pathway, sometimes 

referred to as the ñdirect pathwayò (Wichmann & DeLong, 1996)  or ñGo pathwayò  

(Frank et al., 2004; O'Reilly & Frank, 2006),  runs through a set of striatal cells inhibiting 

the output areas of the BG, the internal segment of the globus pallidus (GPi) and the 

substanti nigra pars reticulata (SNr).  The GPi/SNr cells fire in a tonically inhibitory 

fashion, and all of the feedforward striatal cells are GABAergic (inhibitory), so the direct 

pathway disinhibits the areas innervated by the BG output cells, such as the thalamus or 

areas in the midbrain or brainstem.  Thus, striatal activity through the Go pathway 

selectively disinhibits particular motor programs or actions.  The ñhyper-direct pathwayò 

running from cortical, etc., into the subthalamic nucleus (STN) is excitatory and diffuse 

and leads to widespread excitation of the GPi/SNr cells which is probably used for an 

umbrella of ódefaultô inhibition around most of the competing behaviors in an active area 
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(Mink, 1996).  Go pathway activation essentially ñpokes a holeò in this inhibition for the 

desired behavior.  The ñindirectò or ñNoGoò pathway, however, is likely to be used to 

ñvetoò undesired behaviors.  This runs from afferents of the BG to another set of striatal 

cells which, when active, inhibit the external segment of the globus pallidus (GPe).  

These cells, by default, tonically inhibit both GPi/SNr and STN, so activation of the 

NoGo pathway disinhibits inhibition of efferents of the BG.  Two different families of 

DA receptors, D1 and D2, are believed to modulate the activity of the Go and NoGo 

pathways, respectively (Gerfen, 1992).   Approximately speaking, DA has an excitatory 

effect on the D1-dominated cells and an inhibitory effect on the D2-dominated cells 

(Gurney et al., 2001; Hernández-López, Bargas, Surmeier, Reyes, & Galarraga, 1997; 

Hernández-López et al., 2000).  Because of this, dopamine release would tend to excite 

the Go pathway and suppress the NoGo pathway.  According to this model, the akinesia 

and bradykinesia of Parkinsonôs can be explained, then, as depleted DA causing there to 

be sluggish Go pathway and disinhibited NoGo pathway activity (Wichmann & DeLong, 

1996).  A number of recent neurocomputational models of basal ganglia action selection 

make use of this Go/NoGo pathway principle (Brown, Bullock, & Grossberg, 2004; 

Frank et al., 2004; O'Reilly & Frank, 2006), and the model in this dissertation follows 

suit. 

1.2.2.3 Diverse Parallel Corticostriatal Selection/Gating Pathways  

An input-output circuit such as described above is instantiated myriad times in the 

BG, with different inputs and outputs.   Some efferents of the BG outputs are subcortical: 

midbrain and even brainstem nuclei, such as are involved with basic motor programs 

(Grillner et al., 2005).  The neocortex, however, is also thoroughly connected, through 
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the thalamus, to the basal ganglia, so that it, too, falls under the inhibitory-release control 

of the BG.  As a result, the BG participates not only in motor control, but also cognitive 

and affective control (Middleton & Strick, 2000).  The precise input-output mapping of 

these cortico-basal ganglial pathways it is still a topic of investigation, but one currently 

prevalent theory is that the BG consists of a number of segregated, parallel 

thalamocortical loops, each performing their action selection on a different information 

pathway (G. E. Alexander, DeLong, & Strick, 1986; Middleton & Strick, 2001).  In 

(Middleton & Strick, 2001), there are proposed to be several sets of loops, based on 

anatomical tracing evidence.  There are skeletomotor loops regulating the motor and 

premotor areas of the frontal cortex: M1, SMA, and PMC (the ventral component).  

There are oculomotor loops controlling FEF and possibly SEF.  There are separate 

dorsolateral PFC loops that control BA 9 and BA 46, and these are likely to be important 

in planning and spatial working memory (Middleton & Strick, 2000).  There are lateral 

orbitofrontal loops (mainly BA 12) which are probably associated with object working 

memory function.  There are likely to be medial OFC loops (mainly BA 13), and ACC 

loops (both motor- (BA 24c) and limbic-related (BA 25,32)).  Finally, there are likely to 

be BG loops associated with inferotemporal (IT) and posterior parietal cortical (PPC) 

areas which are involved in object recognition and spatial perception, respectively 

(Milner & Goodale, 1998).   

Another way of characterizing the division of the basal ganglia (Joel & Weiner, 

1994, 2000) is to divide it into motor, associative, and limbic components.  The motor 

circuits mainly run through the (dorsal) putamen into motor and premotor areas.  The 

associative circuits mainly run through the (dorsal) caudate nucleus into dorsal PFC.  The 
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limbic circuits run through the ventral striatumðwhich includes the ventral putamen and 

caudate nucleus, the nucleus accumbens (NAc), and the olfactory tubercleðinto medial 

PFC areas (e.g. OFC and portions of ACC: prelimbic cortex (BA 32) and infralimbic 

cortex (BA 25)) related to limbic processing.  Joel and Weiner (1994, 2000) propose that 

there may not be a strict segregation of the thalamocortical loops, but that the loops may 

be interconnected via a branching between striatal areas and the distinct nigral/pallidal 

outputs. 

 The parallel, possibly segregated, striatal circuits, such as discussed earlier (G. E. 

Alexander et al., 1986; Middleton & Strick, 2001) are likely to be differentiated along a 

dorsolateral-to-ventromedial gradient (Voorn, Vanderschuren, Groenewegen, Robbins, & 

Pennartz, 2004).  Typically, a distinction is drawn between dorsal and ventral striatum;  

Figure 1.5 shows the boundary usually drawn.   The dorsolateral-to-ventromedial axis is 

depicted in Figure 1.6.  The motoric components of the striatum lie in the dorsolateral 

portion (putamen and caudate nucleus) whereas the associative and limbic components 

lie in the more ventromedial regions (nucleus accumbens core and shell).  The entirety of 

this striatal axis is innervated by the dopaminergic nuclei, as will be discussed soon. 

1.2.2.4 Reinforcement Learning in the Gating Pathways: Actor/Critic Learning  

 So far, only the basic feedforward activity of the BG circuits has been discussed.  

However, an important question is how these action selection pathways develop in the 

first place.  The likely answer is that DA-dependent corticostriatal plasticity allows 

reinforcement learning in the BG (Mahon, Deniau, & Charpier, 2004; Reynolds, Hyland, 

& Wickens, 2001; Reynolds & Wickens, 2002).  The BG has been extensively implicated 

in reinforcement learning as well as action selection (Graybiel, 1998; Packard & 
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Knowlton, 2002).  Lesions of striatal cells, particularly in the dorsolateral striatum 

(Faure, Haberland, Condé, & El Massioui, 2005; Packard & Knowlton, 2002; Yin et al., 

2004), tend to disrupt the acquisition of habitual S-R responses.  Dopamine depletion in 

the dorsal striatum, either through antagonist delivery or through lesioning of DA cells, 

also leads to impairment of S-R learning (Faure et al., 2005; Robbins, Giardini, Jones, 

Reading, & Sahakian, 1990).   

 While the dorsal striatum seems to be more involved with S-R learning, the 

ventral striatum appears to be more important in S-O learning (O'Doherty et al., 2004), 

but disruptions to plasticity or dopamine transmission there also interfere with 

instrumental learning (Hernandez, Sadeghian, & Kelley, 2002; Smith-Roe & Kelley, 

2000).   The ventral striatumôs role in learning S-R mappings is a topic of interest in this 

dissertation.  OôDoherty and colleagues (2004) suggest that the dorsal striatum is an 

óactorô pathway, whereas the ventral striatum is a ócriticô pathway, responsible for 

recognizing the reward-potential of the situation and relaying this to the óactorô to train 

the latter to respond correctly.  For example, if a rat is learning to press a lever (R) in 

response to a light (S), for a food-pellet reward (O), the dorsal striatal actor, will be 

rewarded by the ventral striatal critic when the actor stumbles upon the correct behavior, 

and this will ñstamp inò the response.  But the critic may need to learn the mapping 

between the light (S) and the food-delivery (O) for the instrumental learning to take 

place.  One possibility as to why could be that the unexpected delivery of the reward in 

the absence of an already-learned (S-O) association might not be enough to signal 

learning in the S-R actor.  In other words, the ventral striatumôs association is needed to 

train the dorsal striatum.  Another possibility, however, might be that the organism is not 
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aroused enough to try a response until it learns a mapping between the light and potential 

reward; in other words, the ventral striatum may need to engage in incentive learning 

(Ikemoto & Panksepp, 1999) before the organism will be motivated to try a response for 

which it might be rewarded.   

1.2.3 Midbrain Dopamine Nuclei  

1.2.3.1 DA Receptor Types, Their Effects and Locations 

 The neurophysiology of DA is complex, but well-studied, with thousands of 

papers extant in the literature on the subject, and discoveries continuing to be made.  Five 

(agreed upon) subtypes of DA receptors exist, designated D1-D5 (Bergson et al., 1995; 

Gardner & Ashby, 2000).  These are grouped into two families, the D1-like family (D1 

and D5), and the D2-like family (D2, D3, and D4).  In this paper, henceforth, when D1 or 

D2 are referred to, it will refer to the family, not the receptor subtype.  Both D1 and D2 

(and the rest of their families) are slow-acting metabotropic G-protein receptors, but they 

have opposing effects because D1 activation stimulates the second messenger cAMP 

production, whereas D2 activation inhibits it (Greengard, 2001).  In the striatum, the 

consequence is that D1 activation enhances striatal medium spiny neuron excitability (in 

relatively depolarized conditions) by enhancing L-type calcium currents, but D2 

activation (in the NoGo striatal cells, at least) reduces neuron excitability by reducing 

these same currents (Greengard, 2001; Hernández-López et al., 1997; Hernández-López 

et al., 2000).  Actually, D1 activation, in effect, heightens the signal-to-noise ratio of cell 

responsiveness, suppressing firing in relatively hyperpolarized cells, and expediting firing 

in relatively depolarized ones (Hernández-López et al., 1997; Schultz, 1998; Servan-

Schreiber, Printz, & Cohen, 1990).   
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D2 activity should oppose this action, making the cell responsiveness more 

permissive, but less active during mid-range stimulation.  However, in the striatum, D1 

receptors seem to predominate in the medium spiny neurons of the direct (Go) pathway, 

whereas D2 receptors predominate in the neurons of the indirect (NoGo) pathway 

(Gerfen, 1992).  In primate neocortex, both D1 and D2 receptors are present, with highest 

concentrations in the frontal lobe, but D1 is about 10-20 times more frequent than D2 

(Lidow, Goldman-Rakic, Gallager, & Rakic, 1991).  The neocortical D1 receptors are 

mainly located in extrasynaptic portions of the dendritic spines of pyramidal cells 

(Smiley, Levey, Ciliax, & Goldman-Rakic, 1994), which means that their DAergic 

activity is more likely driven by extrasynaptic concentrations of DA than by synaptically 

released DA.  Evidence shows that D1 receptors are also extrasynaptic in the striatum and 

substantia nigra (Caillé, Dumartin, & Bloch, 1996). 

1.2.3.2 Anatomical Efferent Connectivity of the Midbrain DA Nuclei  

The major nuclei containing dopaminergic cells are all located in the midbrain, in 

neighboring areas (moving lateral-to-medial) designated A8 (the retrorubral area), A9 

(the substantia nigra pars compacta; SNc), and A10 (the ventral tegmental area; VTA) 

(Oades & Halliday, 1987; Voorn et al., 2004).  Connections from these nuclei to the 

striatum fall along the dorsolateral-to-ventromedial axis described by Voorn and 

colleagues (2004) and shown in Figure 1.6, with A8 connecting most dorsolaterally, VTA 

connecting most ventromedially, and SNc connecting in an intermediate fashion to both 

dorsal and ventral striatum, though primarily the former.  The SNc pathway, which 

projects mostly to the (dorsal) caudate nucleus and putamen (collectively called the 

neostriatum), is generally referred to as the mesostriatal, or nigrostriatal, pathway 
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(Gardner & Ashby, 2000; Le Moal & Simon, 1991), though it includes, to a much lesser 

degree, connections from VTA.  As somewhat of an artifact of terminology, the VTA 

connections to the nucleus acccumbens (a large portion of the ventral striatum) are 

considered part of the mesolimbic pathway which also innervates other limbic regions 

such as the amygdala, bed nucleus of stria terminalis, cingulate cortex (including ACC), 

parts of the hippocampal complex, etc. (Gardner & Ashby, 2000; Oades & Halliday, 

1987).  VTA also connects, through a mesocortical pathway, primarily to frontal portions 

of neocortex such as PFC and premotor regions, but also to sensory associational areas, 

including areas in the temporal cortex (Oades & Halliday, 1987; Schultz, 1998).   Figure 

1.7, taken from a recent review (Fields, Hjelmstad, Margolis, & Nicola, 2007), shows the 

major pathway connectivity of the VTA. 

The model developed in this dissertation includes pathways that are likely to have 

correspondents in mammalian brain that fall within the SNc nigrostriatal pathway and 

within the VTA mesolimbic (mesoaccumbens in this case) and mesocortical pathways.   

1.2.3.3 DA Cell Activity and Regulation of DA Release: Tonic vs. Phasic 

Mechanisms  

DA cells that are activeðmaybe two-thirds of them on average at a given timeð

tend to fire single spikes at an irregular slow rate (interspike intervals: 200-250 ms), 

driven by endogenous ñpacemakerò conductances (Bunney, Chiodo, & Grace, 1991; 

Grace, 2002).  When depolarized further, they may switch to a bursting mode (average 

inter-burst interval around 350 ms; burst frequency > 12 Hz), and at even higher 

depolarization, become inactive again (Bunney et al., 1991; Ungless et al., 2004).   

Background (ñdefaultò, unstimulated) activity of DA cells may be bursting or non-
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bursting (Schultz, 2007).  Bursting seems to depend upon excitatory activity of the 

pedunculopontine nucleus (PPN) and laterodorsal tegmental nucleus (LDT) (Schultz, 

2007). 

In the striatum, the dopamine transporter (DAT) very quickly reuptakes synaptic 

releases of DA (Grace, 1991, 2002; Schultz, 1998).  The baseline concentration of DA, 

probably maintained by spontaneous ñdefaultò DA cell firing, in the striatum is about 5-

10 nM (Schultz, 2007).  This is enough to stimulate high-affinity D1 and D2 receptors, 

but not their low-affinity counterparts.  In the striatum 80% of the D1 receptors are low-

affinity, and over 80% of the D2 receptors are high-affinity (Schultz, 1998).  As D1 

receptors are primarily extrasynaptic, this means that they are (mostly) quiescent by 

default, whereas the D2 receptors, both synaptic and extrasynaptic, are likely to have 

some degree of default activity. 

Under non-bursting DA firing, the DA concentrations may increase, even by a 

factor of 2 or 3, but this is probably not enough to engage the low-affinity receptors 

which require activation concentrations on the order of hundreds of nM (Schultz, 2007).  

However, since 20% of the extrasynaptic receptors are high-affinity, the rate of non-

bursting firing might still affect a significant number of the D1 receptors, in addition to a 

majority of the D2 receptors.  Some of the D2 receptors are release-inhibiting 

autoreceptors on the DA cell synaptic terminals, and these may be activated by this 

extracellular DA, leading to negative-feedback inhibition of DA cell dopamine release 

(Grace, 1991, 2000).   

When burst-firing is encouraged, DA release is much augmented and overwhelms 

DAT reuptake, exciting the postsynaptic DA receptors, and also spilling out into the 
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extracellular area around the target synapses so that short-term peak concentrations of 

extrasynaptic DA briefly run over the low-affinity receptor threshold (Schultz, 1998).  

Thus, most of the D1 receptors would require burst firing to activate.  The D2 

autoreceptors would more strongly inhibit the DA release from the DA terminals. 

Grace in his research has emphasized that tonic (i.e. extracellular) DA inhibits 

phasic (i.e. DA cell spiking-triggered) DA release.  Both in striatum (Grace, 1991) and in 

PFC (Takahata & Moghaddam, 1998), there are also glutamatergic receptors on the DA 

cell axon terminals which afferent neurons (e.g., from the neocortex) may activate to 

promote (primarily extrasynaptic) release of DA, but such release seems to depend on 

some baseline DA cell firing perhaps providing available DA reserves to be released 

(Grace, 2002; Keefe, Zigmond, & Abercrombie, 1992).  However, the glutamatergic 

afferents could thereby provide a mechanism by which PFC and other cortical areas 

could inhibit striatal (phasic) DA action, something which may have clinical 

consequences.  Grace (1991) hypothesizes that in schizophrenia, low ambient PFC 

activity leads to reduced baseline extracellular tonic DA which disinhibits phasic DA 

action because of decrease of D2 autoreceptor action, and possibly because of up-

regulation of postsynaptic DA receptors.  By comparison, regarding alcohol and 

psychostimulant addiction, he hypothesizes (Grace, 2000) that the drugs tend to increase 

the general tonic level of DA in striatum, which causes down-regulation of response to 

phasic DA signals.  Then, when the drugs are withdrawn, it takes time for the phasic DA 

response to recalibrate, and the subject feels a dysphoric state while the phasic DA 

response is hypoactive.   
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A number of situations can lead to long-term DA concentration increases for a 

duration on the order of minutes (as measured by microdialysis) where the increases are 

from 20%-100%, and sometimes up to 200% above the 5-10 nM baseline (Schultz, 

2007).  Again, these concentrations are probably not sufficient to activate the low-affinity 

receptors, so D2 receptors are probably primarily affected.  Schultz (2007) suggests that 

the presynaptic glutamatergic release mechanism previously mentioned is more likely to 

be responsible for these long-term DA concentration changes than the phasic signal.  

However, as will be seen in Section 1.2.3.6, there is evidence of an example where the 

DA cell firing rate can dynamically modulate DA concentrations over a time period on 

the order of a few seconds. 

The tonic/phasic interaction described above holds mainly for the striatum.  The 

dynamics of DA release in PFC are likely to be different because there is little DAT, but 

DA is instead reuptaken by noradrenergic (NE) reuptake mechanisms (Grace, 2002).  

This likely leads to a much slower reuptake dynamics.  In addition, the predominance of 

extrasynaptic D1 receptors which are believed to be critical for working memory function 

(Durstewitz & Seamans, 2002; Zahrt et al., 1997) suggests that the base rate of DA cell 

firing may be responsible for maintaining a tonic level of PFC dopamine that is necessary 

for proper PFC function, including cortical plasticity, as will be discussed soon. 

A note of clarification would be useful at this point regarding the usage of ótonicô 

and óphasicô, both in this dissertation, and in the literature in general.  óTonicô DA effects 

might refer to the effects of extracellular concentrations of DA, as in Graceôs papers, or it 

might refer to the effects of a baseline rate of firing of the DA cells.  In this dissertation, 

the latter is mostly intended.  The former and latter could be decoupled by, for example, 
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the inhibitory effects of the D2 autoreceptors, or by corticostriatal glutamatergic 

stimulation of the DA terminal boutons.  By óphasicô DA, Grace is referring to the DA 

cell spike-driven release of DA.  In this dissertation, though, the term will be mainly used 

to designate short-term events (e.g. bursts or dips) that modify the base-rate of firing, or, 

alternatively, the rate of DA cell bursting since typical firing seems to be slow-rate firing 

punctuated with short bursts (Ungless et al., 2004).  A central theme in this dissertation is 

that the tonic DA firing is a little like a carrier wave in radio communications, and the 

phasic changes are like frequency-modulation of this.  The carrier wave itself broadcasts 

to DA targets a level of activity-oriented motivation in the system, whereas the 

superimposed frequency modulations signal events that should lead to (reward or 

punisher) reinforcement. 

1.2.3.4 Conditions for DA Cell Phasic Bursts and Dips 

Extensive study has been made by Schultz and colleagues (Fiorillo, Tobler, & 

Schultz, 2003; Hollerman & Schultz, 1998; Ljungberg, Apicella, & Schultz, 1992; 

Schultz, 1998, 2007; Tobler, Fiorillo, & Schultz, 2005; Waelti, Dickinson, & Schultz, 

2001) of the conditions under which DA neurons fire in response to environmental 

events.  Figure 1.8 shows their main results: DA cells fire with a phasic burst when there 

is an unexpected reward and when there is a stimulus cue that predicts a reward 

(Hollerman & Schultz, 1998; Ljungberg et al., 1992; Waelti et al., 2001), but firing is 

phasically suppressed when a reward that was predicted based on a stimulus cue is 

omitted (Hollerman & Schultz, 1998; Waelti et al., 2001).  DA cells also respond to 

salient or novel events, though the response to these habituates rapidly (Ljungberg et al., 

1992).  There is also evidence that the amplitude of phasic bursts may encode the 
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amount/intensity of reward received or (during the conditioned stimulus) expected 

(Tobler et al., 2005).  Evidence in this research has suggested that the responsive cells 

from the DA nuclei (including SNc and VTA) fire in synchrony, suggesting a coupling 

between the activation of the nuclei (Ljungberg et al., 1992).  One possible mechanism 

suggested that might allow this is electrotonic coupling of the DA cells during burst 

activity, possibly due to the influence of the neuropeptide CCK (Bunney et al., 1991).  

Also, as previously mentioned, evidence suggests that excitatory activity of the PPN is 

important for triggering burst firing in the DA cells likely to be involved in phasic release 

(Schultz, 2007). 

More recently, there has appeared evidence that DA cells are suppressed by 

aversive (punisher) stimuli.  Ungless and colleagues (2004) discovered that earlier studies 

had mistakenly labeled aversive stimulus-responsive non-DAergic cells in VTA as being 

DA-releasing.  Their evidence showed that the true DA cells were actually inhibited by 

aversive stimuli; both basal firing rate and rates of emitted bursts were slowed during the 

application of foot pinch to rats.  Probably the VTA cells that were excited by aversive 

stimuli were inhibitory and responsible for the suppression of the nearby DA-ergic VTA 

cells.  In addition to these cells, there are GABA-ergic cells in VTA which receive wide 

afferent input (from areas such as LH and PFC) and project to the DA-ergic VTA cells 

(Fields et al., 2007).  These might also allow aversive cues to inhibit the DA cells. 

The evidence, then, suggests that phasic DA signals may signal reward prediction 

error which can be used for reinforcement learning (Hollerman & Schultz, 1998; Schultz, 

Dayan, & Montague, 1997; Suri, 2002; Waelti et al., 2001).  When an organism is not 

expecting a reward and it receives one, there is a positive prediction error, and a burst is 
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signaled.  On the other hand, when the organism is expecting a reward and itôs omitted, 

there is a negative prediction error, and there is a phasic dip (but see (Fields et al., 2007); 

evidence for reward omission dips have not been universally observed).  When 

expectations and reward receipt are in alignment, there is zero prediction error and firing 

remains at baseline.  There are additionally dips during aversive stimuli and bursts during 

novel or extremely salient stimuli (but see (Fields et al., 2007); rats have shown responses 

for fully predicted rewards).   Redgrave and colleagues have challenged the conclusion 

that the DA signal represents reward prediction error (Redgrave, Prescott, & Gurney, 

1999b), and favor the interpretation that phasic bursts signal a need to switch attention or 

select behaviors.  But it seems possible that the phasic DA signal could play more than 

one role, signaling both prediction error and/or a need to attend to a stimulus.  In the 

model in this dissertation, DA activity phasically increases during rewards, but also 

during novel stimuli.  Under task learning conditions, novelty-induced phasic bursts 

actually cause the model to learn the task in cases where it would have otherwise failed 

by encouraging explorative behavior and simultaneously rewarding it, even when an 

actual reward is not delivered.  Generally speaking, phasic bursts may, in addition to 

promoting learning, temporarily encourage initiation of new behaviors.  Phasic dips may, 

in addition to promoting unlearning, temporarily discourage initiation of new behaviors.  

The model in this dissertation would suggest this to be plausible. 

1.2.3.5 Afferent Regulation of DA Cell Firing Rate 

 Many researchers make a simplifying assumption about the homogeneity of DA 

cell function, but there are likely several potentially independent circuits, due to the 

heterogeneous structure of the DA nuclei (Fields et al., 2007; Gardner & Ashby, 2000).  
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The model developed in this dissertation recognizes a variety of efferent projections, but 

follows other researchers in treating SNc and VTA as a single compartment responding 

in a uniform way, as if their afferents were the same and exerted the same influence.   

 There is evidence for functional dependence of the SNc pathway on the VTA 

compartment (Joel & Weiner, 2000).  The ventral pallidum which is the output part of the 

nucleus accumbens pathway projects to PPN (Chivileva & Gorbachevskaya, 2008).  This, 

in turn, projects in an excitatory way (see below) to SNc.  This suggests that SNc is under 

control of NAc activity through the standard Go pathway circuit shown in Figure 1.4.  

But NAc is dopaminergically innervated by VTA.   The VTA compartment, then, 

probably enables ventral striatal-mediated release of SNc activity, though other afferents 

of the enabling NAc pathway, e.g. amygdala or orbitofrontal cortex, may also need to be 

active.  Ikemoto and Panksepp (1999) have suggested that the ventral striatal pathway is 

more involved with flexible approach behavior and incentive learning whereas the dorsal 

striatal path is more involved with habitual reactive behavior.  It seems likely that ventral 

striatal activity triggered by incentive cues (e.g. drug-use cues) represented in OFC 

and/or amygdala could disinhibit SNc unit activity which would promote habitual S-R 

responses mediated by the dorsal striatum, including drug use responses. 

There are other important afferent neuroanatomical differences between the two 

DA nuclei: the SNc afferents seem to be primarily GABAergic (therefore inhibitory) 

whereas the VTA afferents are primarily glutamatergic (therefore excitatory) (Lee, 

Abercrombie, & Tepper, 2004).  Focusing on the VTA compartment/s, there is also 

evidence that there are separate VTA circuits supplying DA to PFC and NAc because 



36 

 

intra-VTA administration of neurochemicals can lead to different DA concentration 

changes in PFC and NAc (Fields et al., 2007).   

However, as Schultzôs work has shown relative homogeneity of reward-related 

response by the separate compartments, they will be treated as the same in this 

dissertation, though future research may want to address more of the heterogeneities in 

the mesostriatal/mesocortical axis.  The fact that the PPN innervates both SNc and VTA 

(Fields et al., 2007) and it is a likely excitatory source of the reward response (Schultz, 

1998, 2007) suggests a mechanism by which both compartments could possibly 

synchronize in at least their reward-related responses.   As mentioned, also, electrotonic 

coupling (i.e. gap junctions) could allow nearby DA neurons to synchronize under certain 

neurophysiological conditions (Bunney et al., 1991). 

Figure 1.7 shows the major afferents (as well as efferents) of VTA (Fields et al., 

2007).  The connection to the lateral hypothalamus is one key excitatory afferent 

pathway.  Cells in LH that release the neuropeptide orexin into areas such as VTA and 

NAc are believed to fire selectively in association to pursuit of consummatory rewards 

(e.g. food and drugs) (Harris, Wimmer, & Aston-Jones, 2005).  Activation of LH is 

stronger when animals are searching for food and is suppressed when foraging is 

successful and the animal has switched to consumption (Panksepp, 1998).  

Two neuromodulatory nuclei project to VTA: the NEergic locus coeruleus and the 

serotonergic dorsal raphe nucleus (Fields et al., 2007).  NE release is associated with 

attentional arousal and, like the other major catecholamine, DA, increases the signal-to-

noise responses in target neurons (Panksepp, 1986), so this connection could allow DA 

activity in VTA to increase during vigilance states.  5-HT release is largely emotionally 
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and behaviorally inhibitory (Panksepp, 1986), and dorsal raphe nucleus action inhibits 

DA cell activity (Schultz, 1998), so this connection may allow a pathway for DA cell 

suppression.  An opponent relationship between 5-HT and DA has been suggested that 

may have an important bearing on the mechanisms of reinforcement learning (Daw, 

Kakade, & Dayan, 2002). 

Another (likely excitatory) afferent of VTA is the amygdala (Schultz, 1998).  The 

amygdala in general is involved with evaluative learning and its various nuclei are known 

to respond both to rewarding and aversive stimuli (Baxter & Murray, 2002).  Other major 

afferents to the VTA include the laterodorsal tegmental nucleus (LDT), PPN (through an 

indirect pathway through SNc), and PFC (Fields et al., 2007).   These exert various 

excitatory and inhibitory influences on VTA DA and GABA cells feeding into two 

distinct PFC and NAc projection circuits (Fields et al., 2007).   A functional explanation 

of these different influences remains to be sorted out, but there are clearly several 

pathways by which other areas of the brain could potentially stimulate or restrict DA cell 

firing from VTA. 

The other major DA compartment, the SNc, receives GABAergic connections 

from the striosomes (patch-cells) of the striatum (Gerfen, 1992), as well as from SNr (Lee 

et al., 2004).  Recent evidence (Lee et al., 2004) suggests that pallidal chemical excitation 

leads to increased bursting of DA cells (in conjunction with only a mild increase of DA 

cell firing rate), and an elevation in neostriatal extracellular DA.  By contrast, electrical 

stimulation of the same area leads to DA cell inhibition.  This seeming contradiction is 

reported to probably be due to multiple pathways from GP to SNc through the SNr which 

have varying sensitivities.  The PPN provides a major excitatory input (mixed cholinergic 
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and glutamatergic) to SNc (Blaha & Winn, 1993; Mena-Segovia, Bolam, & Magill, 

2004).  Brown and colleagues (Brown, Bullock, & Grossberg, 1999) have constructed a 

neurocomputational model of the learning dynamics described by Schultz and colleagues 

of the phasic DA signal involving a number of these pathways. 

1.2.3.6 Behavioral and Cognitive Correlates of DA Cell Firing 

As mentioned, evidence suggests that the switch of DA neurons from single-firing 

mode into a burst mode has a greater impact than a change in their overall firing rate on 

extracellular concentrations of DA in the striatum (Lee et al., 2004; Schultz, 1998).  This 

is probably due to the fast DAT reuptake mechanisms in the striatum.  Stimulus events 

associated with rewards may trigger bursting in the DA cells that release a large amount 

of DA.  In addition to time (on the order of tens of ms) required to reuptake released DA, 

effects of DA receptor activation may persist over long-term period (hundreds of ms to 

minutes) because DA receptors are metabotropic, acting through much slower second-

messenger pathways mechanisms than faster acting (c. 1 ms) ionotropic (AMPA or 

GABA) receptors (Greengard, 2001).  Therefore, cues for phasic DA release could lead 

to behavioral and cognitive effects persisting over a second to minute duration.  Such 

phasic signals are probably involved with the previously-described short-term reward 

signals that may allow reward error-prediction.   

Rewards and other stimuli, however, may also trigger changes in dopamine action 

(measured by extracellular DA concentration) over a longer time course, such as might be 

measured with voltammetry (the order of seconds) or microdialysis (the order of minutes) 

(Schultz, 2007).  Ikemoto and Panksepp (1999) review much of this evidence for the NAc 

(ventral striatum) DA.  Long-term rises in extracellular DA have been observed during 



39 

 

both anticipatory and consummatory phases of foraging behavior.  Novel and/or 

unusually tasty food also lead to increased DA.  Interestingly, during operant tasks NAc 

DA rises when trials are begun and lowers back to a baseline after a session is completed.  

Within a session, there are often rises in DA during lever pressing and eating.  Aversive 

stimuli, too, can lead to increased extracellular DA levels, which initially may seem 

puzzling, given DA cell suppression by aversive stimuli, but could be explained by 

engagement of glutamatergic stimulation mechanisms.  As Ikemoto and Panksepp point 

out, the aversive stimulus DA may be involved in facilitating active avoidance behaviors. 

Pharmacological microinjection and 6-OHDA lesions have been used to perform 

DA level manipulations (Ikemoto & Panksepp, 1999).  The former involves agonist or 

antagonist injections into localized brain areas.  The latter technique selectively lesions 

DA cells projecting to particular targets, though this selectivity in location has some 

significant limitations.  Injections of DA and DA agonists into NAc tend to lead to 

heightened locomotor activity, specifically activity of an explorative and/or appetitive 

nature.  DA depletion tends to reduce such locomotor activity, and has been shown to 

reduce hyperactivity associated with novelty.  Some evidence suggests the shell portion 

of the NAc is more important than the core region for exploration.  Raised DA levels also 

lead to increased responses to reward-predicting CSs.  Disruption of NAc DA leads to 

decreased hoarding behaviors, but does not seem to disrupt the consumption of food.  

When a choice is available of eating a default food for free or having to lever-press for a 

better food, NAc (core subregion) DA disruption seems to reduce ratsô likelihood of 

working for the better food (Sokolowski & Salamone, 1998).  This suggests that NAc DA 

may stimulate instrumental responding, that S
D
s predicting reward facilitate responding 
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through a ventral striatal pathway.  NAc DA also seems to be involved with learning and 

performance of active avoidance behaviors.  VTA activation of the accumbal circuit 

appears to be sufficient to allow Pavolvian (S-O) incentive learning, though other 

pathways may allow Pavlovian learning as well (Fields et al., 2007). 

In most of these cases, it is not clear whether the increases seen in long-term DA 

concentrations are caused by enhanced DA cell firing, or by glutamatergic stimulation at 

DA targets.  (Fiorillo et al., 2003) presents a case, however, where DA cell effects are 

involved.  As Figure 1.9 shows, under Pavlovian situations, the dynamics of the base-rate 

of DA cell firing seems to be affected by how probable the reward delivery is.  A 

ramping up of DA cell activity is seen after the phasic onset spike occurs related to the 

CS.  This ramping up is terminated when the reward is delivered and/or the CS is offset.  

Interestingly, the rate of ramp-up seems to correlate with not the probability of reward 

delivery per se, but rather with the uncertainty on whether the reward will be delivered or 

not.  The ramp-up is maximal when p = 0.5, and minimal either when p = 0 or p = 1.   

The cognitive/behavioral function of this signal and the potential mechanism 

allowing the uncertainty ramp-up response are unclear.  Why should the tonic DA signal 

be maximal in more uncertain reward conditions?  In the case of Pavlovian situations, it 

doesnôt seem to make much sense, except maybe as a part of mechanism for updating the 

reward prediction error estimation (Schultz, 2007).  Schultz (2007) points out at there 

have been difficulties detecting this uncertainty-related response for instrumental cues.  

However, such an uncertainty signal might be functionally useful during instrumental 

tasks to signal when it might be useful to try a novel response behavior.  Presumably, 

under conditions where the animal is habitually performing the correct response, p = 1, 
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and it is less desirable to try new behaviors, so it would be advantageous for the DA 

signal to not increase over baseline.  On the other hand, if p = 0, it means the animal 

probably hasnôt been rewarded for any behaviors itôs tried so far, so it is likely to mean 

that there is no useful relationship between the CS and any useful R that might lead to a 

positive O, so the animal should ignore the ineffectual S.  But if the animal has been 

rewarded on some occasions for responding, but hasnôt got the correct S-R mapping 

figured out yet, then 0 < p < 1, and it may be useful for the animal to try some novel 

behavior to see if it improves its chances of success. 

Assuming that reward uncertainty influences the DA signal according to the 

above rationale, what is the likely afferent pathway allowing the ramp-up excitation in 

the DA cellsô activity?  Two  likely candidates (see Figure 1.7) might be the orbitofrontal 

cortex, which is considered a part of PFC, or the amygdala.  Both of these areas have 

cells that selectively fire in response to cues that predict rewards or punishers.  There is 

evidence, also, of reciprocal connections of the cingulate cortex to VTA (Oades & 

Halliday, 1987).  Section 1.2.4 will focus on the possibility of cingulate cortex 

involvement which this dissertation favors as the likely pathway for representing 

uncertainty/frustration.   

One (hard-to-test) hypothesis regarding the subjective experience correlating with 

the uncertainty ramp-up is that the animal becomes increasingly frustrated/anxious as 

time progresses in maximally uncertain reward conditions.  If p = 0, the animal doesnôt 

get excited because there is no expectation of impending reward.  If p = 1, the animal 

doesnôt get excited enough to change its behavioral course because it is confident it will 

be rewarded.  The animal is maximally motivated to ñdo somethingò when chances of 
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reward are ñup for grabsò.  There would be a ramp-up in desire to act in a novel way 

because, generally speaking, if an animal waits too long to act, the opportunity to engage 

in the action that leads to reward will pass. 

In short, it would evolutionarily adaptive for a brain to have a signal that activates 

when a reward cue appears and ramps up as time goes by, finally shutting off when the 

promise of reward goes away or after the reward has been gained.  Such a signal would 

be strongest, not when rewards are most likely to be gained by the usual responses, but 

rather when the novel behavior may be needed to determine what the best response is.  

It is not immediately clear how the uncertainty measure would be calculated in 

the neural circuitry, but it could involve having a predictor attempt to guess whether a 

reward would or would not be delivered, each time a cue was presented.  Another 

pathway mapping a cue to an estimate of uncertainty would be trained by this predictor 

pathway, with errors made by the predictive pathway increasing the synaptic weight 

(LTP) and correct responses decreasing it (LTD).  Reward delivery might inhibit the 

output cell/s of this circuit, and disappearance of the cue would remove excitation from 

the circuit. 

1.2.3.7 Striatal DA Modulation  

 The dynamics of striatal cell activation by its afferents (cortex, thalamus, etc.) is 

quite complicated because extracellular DA levels in the striatum modulate the dynamics 

through both D1 and D2 receptor activation (Grace, 2002).  In the presence of DA, 

medium spiny neurons have three possible states: a ódown stateô in which they are 

inactive and unresponsive to input, a inactive óup stateô in which they are highly 

depolarized, but not firing, and an active óup stateô in which they are firing (Grillner et 
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al., 2005).  Either óupô or ódownô states can last for periods on the order of minutes or 

hours (C. J. Wilson & Kawaguchi, 1996).  D1 receptor activity seems to be required to 

facilitate transition from a ódown stateô to an óup stateô (Grillner et al., 2005).  Neurons in 

inactive óup stateô require only a little more afferent activation to induce to firing.  As 

mentioned in Section 1.2.3.1, D1 agonism leads to an increase in signal-to-noise ratio of 

striatal cell activity in the Go units, meaning weak input is suppressed (perhaps because 

the cell is in ódown stateô), but strong input strengthened (perhaps because the cell is in 

óup stateô) (Hernández-López et al., 1997).  By comparision, D2 agonism in the NoGo 

units is inhibitory (Hernández-López et al., 2000), and, moreover could inhibit DA cell 

firing through D2 autoreceptor activation. 

 Neural plasticity in the striatum, particularly in the corticostriatal synapses, is 

critical to the basal ganglia mechanisms of reinforcement learning.  Both the Go and 

NoGo pathways need long-term potentiation (LTP)ðincreasing of synaptic weightsðto 

allow the learning of response to stimuli, and long-term depression (LTD)ðdecreasing 

of synaptic weightsðto unlearn responses.  Hebb (1949) argued that, when two neurons 

fire at (roughly, at least) the same time (an event referred to in this dissertation as a 

Hebbian event), their synaptic weights increased between them (LTP).  However, there 

also needs to be an ñanti-Hebbò mechanism that allows unlearning of weights (LTD) 

when the pre-postsynaptic relationship is weak or otherwise functionally undesirable.  It 

would be functionally useful for systems of neurons to have a value-driven learning 

(Almássy, Edelman, & Sporns, 1998; Sporns & Alexander, 2002) mechanism whereby a 

reinforcement learning signal could signal either a reward or punisher and implement 
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Thorndikeôs Law of Effect on the target synapses, whereby rewards trigger LTP and 

punishers trigger LTD on synapses where there have been Hebbian events.   

While there may be many LTP/LTD mechanisms, dependent on the location of 

the neurons, one well-described hippocampal CA1 LTP/LTD mechanism involving 

NMDA and AMPA receptors (J. Lisman, 1989; Malenka, 2002) may be illustrative of at 

least a wide class of LTP/LTD mechanisms.  Calcium ion (Ca
2+

) concentrations in 

postsynaptic spines may determine whether the synapses there are weakened, 

strengthened, or kept at the same weight.  At zero Ca
2+ 

concentrations, there is no 

plasticity (LTP or LTD); at moderate concentrations, LTD; at larger concentrations, again 

no plasticity; at larger concentrations, LTP; and finally at huge concentrations, LTD (J. 

Lisman, 1989).  Ca
2+ 

ion concentration is mostly determined by activation of NMDA 

glutamate channels.  These tend to be inactive, except when the cell is highly 

depolarized, and when they are active, permit both Na
+
 and Ca

2+ 
entry.   Postsynaptic or 

presynaptic activation alone may give rise to moderate levels of Ca
2+ 

concentration 

leading to LTD, whereas simultaneous activation of the cells leads to high Ca
2+ 

concentration and LTP.  LTP potentiates glutamatergic AMPA receptors, which are 

reactive to glutamatergic excitation, even when the cell is relatively hyperpolarized, and 

LTD depotentiates them.   

DA receptors may modulate this activity also.  D1 receptors, for example, 

potentiate NMDA action, whereas D2 receptors depotentiate it; and there are also direct 

influences of the receptors on the activation of Ca
2+

 currents (Greengard, 2001).  The 

complex striatal circuitry contains both D1 and D2 receptors whose activations may be 
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driven by the extracellular concentrations of DA, so unraveling the effects of DA on LTP 

and LTD is challenging, though much progress has been made.   

Evidence from an in vivo study suggests that striatal synapses engage in LTD by 

default, when a Hebbian event is stimulated, but increased DA levels (dependent on D1 

receptor activity) change this LTD to LTP instead (Reynolds et al., 2001).  Reynolds and 

Wickens (2002) proposed that there is no LTP or LTD in the absence of a Hebbian event; 

and that, in the presence of a Hebbian event, low levels of DA lead to LTD, high levels to 

LTP, and intermediate levels to no change.  They proposed that the high range 

corresponded to the range of DA concentration experienced during phasic reward bursts, 

that the low range corresponded to the concentration during phasic dips, and the 

intermediate range was the normal range of tonic concentration of DA in the absence of 

rewarding or punishing events.  The model in this dissertation follows this pattern with 

the Go units, but reverses the ranges for the D2-receptor dominated NoGo units, i.e., 

making the low range the LTP zone, and the high range the LTD zone.  Both the 

theorized function of the NoGo units and recent cellular mechanisms data support this. 

Very recently, Shen and colleagues (Shen et al., 2008) have presented a review of 

a battery of in vitro experiment results revealing/reproducing a host of neurotransmitter 

influences on LTP and LTD.  Figure 1.10 presents their summary figures showing the 

distinct sets of influences, DAergic and otherwise, on the Go and NoGo striatal units.  In 

the Go units, LTD is not dependent on DA receptor activation, depending rather on 

glutamate and Cav 1.3 (a type of L-type Ca
2+

 channel) activity, as well, and 

endocannabinoid activity.  LTP, however, is dependent on D1 and NMDA receptor 

activity.  At extremely low DA levels, then, LTD activity would be expected to 
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predominate.  At intermediate (tonic default) levels, the low affinity D1 receptors may 

begin to activate enough for the LTP and LTD effects to cancel each other.  At high DA 

levels, the LTP effect would be strongly potentiated.  In the NoGo units, however, LTP 

does not depend upon DA activity because an adenosine receptor, rather than D1, is 

responsible for the actions of the LTP mechanism.  However, the LTD mechanism is like 

the LTD mechanism of the Go units, but additionally requires D2 receptor activation.  So, 

at extremely low DA levels, we should have LTP by default.  At ódefaultô DA levels, the 

LTD effect should perhaps cancel the LTP effect, and at highest levels, the LTD effect 

should dominate.  None of the LTP or LTD mechanisms would be engaged, however, in 

the absence of a Hebbian event. 

1.2.3.8 Prefrontal Cortex DA Modulation  

 The anatomical circuitry in PFC is vastly different from that of the striatum and 

this may result in different mechanisms and dynamics of DA modulation of PFC 

activation and plasticity.  As already mentioned, there are far more D1 than D2 receptors 

in (primate) PFC (Lidow et al., 1991) and PFC lacks DAT with DA reuptake regulated 

instead by NE reuptakers (Grace, 2002).  Most of the D2 receptors are located in layer V 

of the frontal, parietal, and occipital primate cortex, suggesting D2 may regulate cortical 

output (Lidow et al., 1991).  In human PFC (BA 9), D1 receptors seem most concentrated 

in layer V (Lidow et al., 1991).   

 Like striatal cells, (layer V) pyramidal PFC cells seem to have óupô and ódownô 

states in vivo (B. L. Lewis & O'Donnell, 2000).  Default firing consists of alternations 

between the two states, with some firing during the óup stateô.   Neither hippocampal or 

thalamic activation seems to trigger the óup statesô, suggesting corticocortical stimulation 
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is involved.  VTA pulse stimulation can prolong the óup statesô for periods on the order of 

seconds, and this seems to depend upon D1 receptors because D1 antagonists inhibit 

DAergic effects.  D1 potentiates NMDA channel activity while mildly suppressing non-

NMDA glutamatergic activity (Seamans, Durstewitz, Christie, Stevens, & Sejnowski, 

2001).  Since NMDA is only active at higher depolarization, switching the balance of 

glutamatergic response from AMPA channels to NMDA channels leads to D1-modulated 

increase of signal-to-noise ratio responses (Ashby & Casale, 2003).  There is also, 

however, evidence that D2 receptor activation may lead to decreases in PFC cell firing in 

layer V PFC neurons (Gulledge & Jaffe, 1998). 

 D1 receptor activity is apparently important for proper working memory function, 

as both too little or too much D1 receptor activity can disrupt working memory 

performance (Zahrt et al., 1997).  Working memory may be mediated by the D1 receptor 

stabilization of recurrent excitation in the deep layer (e.g. layer V) PFC pyramidal cells 

(Brunel & Wang, 2001; Durstewitz, Kelc, & Güntürkün, 1999; Durstewitz et al., 2000; 

Gao, Krimer, & Goldman-Rakic, 2001).  Hypo-DA is likely to disrupt the NMDA 

channel activity that is used to sustain the recurrent excitation, whereas hyper-DA may 

potentiate GABAergic interneurons which also have D1 receptors (Brunel & Wang, 

2001; Goldman-Rakic, Muly III, & Williams, 2000).  The PFC extracellular level of DA 

may thus control the maintenance of working memory (Durstewitz et al., 1999), and the 

author of this dissertation in previous work has suggested that this extracellular DA level 

may be locally controlled by glutamatergic activation (by other PFC cells) of the terminal 

boutons of the VTA cells (Chadderdon & Sporns, 2006).  Frank and colleagues (Frank, 

Loughry, & O'Reilly, 2001; O'Reilly & Frank, 2006) have suggested that the basal 



48 

 

ganglia may provide a dynamic gating mechanism for engaging and disengaging working 

memory.  Perhaps this gating mechanism might regulate the extracellular DA levels in 

the target PFC zones, allowing multiple working memory traces to be maintained through 

dopamine stimulation, and released either through turning off of the bouton stimulation 

of DA release, or perhaps direct BG-mediated NoGo inhibiting of the working memory 

PFC regions. 

 DAergic modulation of synaptic plasticity in PFC is complex and still not well 

understood, though much data has been collected (Seamans & Yang, 2004).   In in vitro 

PFC brain slices with depleted extracellular DA, DA seems to induce LTD in stimulated 

layer V cells (Law-Tho, Desce, & Crepel, 1995; Otani, Blond, Desce, & Crepel, 1998).  

This seems to depend upon DA receptors, and groups I and II metabototropic glutamate 

(mGluR) receptors, but not necessarily NMDA receptors (Otani, Auclair, Desce, Roisin, 

& Crépel, 1999).  However, when the PFC slices are ñprimedò with a bath of DA for 12-

40 minutes, NMDA-dependent LTP is induced instead of LTD when the PFC neurons are 

stimulated (Matsuda, Marzo, & Otani, 2006).  Hippocampal-PFC synapse NMDA-

dependent LTP appears to depend upon D1, but not D2 receptors (Gurden, Takita, & Jay, 

2000).  Maintenance of either LTP or LTD in layer V PFC neurons appears to depend on 

D1 receptor activation (Huang, Simpson, Kellendonk, & Kandel, 2004).   

 Together, this data seems supportive of a DA control of LTP and LTD which is 

similar to that of the striatal Go cells (see Figure 1.10 (top)), except LTD depends also on 

DA receptor activation.  It would be expected, then, that zero concentration of DA would 

disable either LTD or LTP.  Low extracellular levels of DA such as occur when DA-

depleted PFC slices are bathed in DA would lead to LTD.  Under high extracellular DA 
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conditions, however, LTP would occur.  It may be the case that intermediate levels of DA 

would lead to cancellation of the LTP and LTD effects.  More studies need to be done to 

test these hypotheses. 

 In the model in this dissertation, DA signal-to-noise modulation of basal PFC 

activation is not modeled.  LTP and LTD in model frontal cortical units are regulated 

using the same mechanism that the D1-dominated model striatal Go cells use.  As will be 

discussed in Sections 4.4 and 4.5, DA modulation of working memory is not modeled, 

though this would be a natural extension for future research. 

1.2.3.9 DA and Response Vigor 

 The postsynaptic effects of DA on the excitability of its targets, such as the dorsal 

and ventral striatum and PFC, lead to a role in modulating vigor of response (Niv, Daw, 

& Dayan, 2005; Niv, Daw, Joel, & Dayan, 2006).  Niv and colleagues suggest that the 

tonic DA signal encodes the opportunity cost of inaction which is similar and 

conceptually related to this dissertationôs proposal of a signal of óactivity-oriented 

motivationô.  (óOpportunity costô in a term from economics meaning the reward that 

might have been gained by making an alternate choice.) 

 The level of DA often serves to set the level of effort the organism is willing to 

exert for rewards in its environment.  As mentioned, the ventral striatal (nucleus 

accumbens) extracellular DA levels seem to correlate with exploratory activity motivated 

by drives, reward, and/or novelty cues; and sometimes activation of conditioned 

avoidance behaviors (Fields et al., 2007; Ikemoto & Panksepp, 1999).  Antagonism of 

DA can lead to reduced stimulus-cued instrumental behavior (Dickinson, Smith, & 

Mirenowicz, 2000; Ikemoto & Panksepp, 1999).  Within the NAc, lesions to the core (but 
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not the shell) lead to impairment of fixed-rate responding (for example when an animal is 

rewarded for every 3rd lever press), and also lead to decreased working for a more 

desirable food when a less desirable food is made immediately available (Sokolowski & 

Salamone, 1998).  DA effects on the dorsal striatum can be ascertained by looking at the 

effects of early-stage Parkinsonism since the SNc cells, which innervate the dorsal 

striatum, are the first die off (Cools, 2006).  DA depletions in PFC, as mentioned, as well 

as great excesses, leads to failures of working memory (Zahrt et al., 1997).  Similar to the 

findings of Sokolowski and Salamone in the NAc, DA concentrations in ACC seem to be 

important for the choice of high-cost, high-reward actions vs. low-cost, lower-reward 

options with D1, but not D2, receptor antagonists decreasing the performance of the 

higher-effort behaviors (Schweimer & Hauber, 2006).  Generally speaking, depletions of 

DA lead to hypo-functionality in their target pathways, and the specific consequences of 

that hypo-functionality depend on the targets (Le Moal & Simon, 1991).  But it may be a 

valuable unifying hypothesis to suggest that the base-rate DA signal is a measure of 

activity-oriented motivation or opportunity cost, with the caveat that glutamatergic 

stimulation of extracellular DA release can lead to differences of DA target extracellular 

concentrations in the face of the same DA cell firing pattern, meaning, for example, that 

PFC-mediated working memory might be at a given time more potentiated than NAc-

mediated exploratory motivation.  Thus, the DA cell (SNc/VTA) signal becomes a 

ñglobalò motivation signal which is modified locally at the DA targets to give several 

ñlocalò motivation signals. 

 Results of the model in this dissertation will mainly be compared (in Chapter 3) 

with data related to Parkinsonôs disease (PD) and psychostimulant use.  The former is a 
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canonical example of DA depletion (hypo-DA), whereas the latter is an example of 

excess DA activity (hyper-DA).  The remainder of this section will consider the vigor 

modulating effects of hypo- and hyper-DA, whereas Section 1.2.3.10 will consider the 

effects on reinforcement learning. 

 Parkinsonôs is not merely a static hypo-DA lesion of the SNc, but often a 

progressive disorder in which the dopaminergic neurons in the midbrain nuclei gradually 

die off, adding new symptoms to the disorder as damage spreads from SNc to VTA, 

spreading DAergic denervation from the dorsal to the ventral striatum (Cools, 2006).  

Thus, the motor striatum is affected first, then the associative striatum, then finally the 

limbic striatum.  In the striatal DA targets affected, the D1-dominated Go pathway will 

become hypo-active, and the D2 NoGo pathway will become hyper-active, although itôs 

becoming apparent that the NoGo pathway, in particular, suffers a great deal of dendritic 

spine loss, probably due to moderately high NMDA-stimulated Ca
2+

 concentration which 

leads to chronic LTD (Day et al., 2006; Gerfen, 2006).  The expectation, then, is that 

activity mediated by dorsal striatum should fail first, including motor program activation 

in the motor striatal loops, leading to the classic motor symptoms of delayed reaction 

time and slowed movement (Gauntlett-Gilbert & Brown, 1998; Muller et al., 1999; 

Schultz et al., 1989).  Correspondingly, delivery of both D1 and D2 antagonists in a 

primate reaction task has been shown to slow reaction time (Weed & Gold, 1998).  As the 

disease progresses and damage spreads towards VTA, the associative BG circuits should 

begin to be affected, leading to executive/cognitive control dysfunctions (S. J. G. Lewis, 

Dove, Robbins, Barker, & Owen, 2003; Woods & Tröster, 2003).  Finally, when VTA 

and limbic striatum are affected, difficulties should be observed involving incentive 
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learning and exploratory drive.  As damage to striatal DA innervation is uneven, the 

effects of L-dopa treatment of PD become uneven, potentially leading to hyper-DA in the 

striatal pathways that the primary disorder has yet left undamaged (Cools, 2006).  It is 

therefore useful, in simulation modeling of corticostriatal function, to model distinct 

corticostriatal pathways, and this dissertation takes this approach.  Selective hypo- or 

hyper-DA effects may be manifested independently in different pathways which 

complicates consequences of global drug delivery. 

 The effects of two psychostimulants are considered as models of hyper-DA in this 

dissertation: cocaine and amphetamine, although studies have also been done using D1 or 

D2 agonists.  Both cocaine and amphetamine suppress the dopamine transporter DAT, 

leading to reduced reuptake, and therefore increased extracellular concentration, of DA in 

the striatum (Grace, 2000; Saunders et al., 2000).  Whereas cocaine inhibits DAT 

activity, amphetamine also promotes cellular internalization of DAT receptors (Saunders 

et al., 2000), and stimulates DA release from DA terminals in SNc and VTA (Bernardini, 

Gu, Viscardi, & German, 1991; Pifl, Sitte, Reither, & Singer, 2000; Saunders et al., 

2000).  In a seemingly paradoxical way, low dosages of psychostimulants can actually 

suppress DA cell firing, which perhaps explains how psychostimulants may have 

therapeutic effects for attention deficit hyperactivity disorder (ADHD).  However, this is 

explainable by the fact that there are inhibitory D2 autoreceptors on the DA terminals 

providing negative feedback on DA cell firing (Grace, 2000).  In fact, when D2 receptors 

are blocked, the inhibitory effects of D-amphetamine go away, leaving a net excitatory 

effect for the drug (Shi, Pun, Zhang, Jones, & Bunney, 2000).  Thus, when interpreting 

psychostimulant effects, it is necessary to recognize that low dosages may actually lead to 
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net inhibitory effects due to presynaptic D2 effects, whereas higher dosages lead to net 

excitatory effects due to postsynaptic effects (Frank & O'Reilly, 2006).  (By contrast, 

delivery of antipsychotic D2 antagonists, can lead to DA excitation at low dosages, and 

inhibition at higher dosages.) 

 Psychostimulants such as cocaine and D-amphetamine have been shown to 

facilitate reaction time in both primates (Hienz et al., 1994) and humans (Halliday et al., 

1994).  In rats, subcutaneous amphetamine injections tend to decrease frequency of 

behaviors like grooming, lying, and standing still, and increase behaviors such as 

sniffing, snout contact, and slow and fast locomotion (Carr & White, 1987).   In the same 

rats, direct amphetamine injection into nucleus accumbens leads to much of the same 

changes, whereas fewer effects are observed in dorsal striatal injections. 

1.2.3.10 DA and Reinforcement Learning 

 In addition to effects on response vigor, DA has many effects on reinforcement 

learning.  Given the LTP and LTD effects predicted in Sections 1.2.3.7 and 1.2.3.8, we 

would predict that extreme hypo-DA would lead to LTD in the striatal Go cells and PFC 

cells during Hebbian events, whereas hyper-DA would lead to LTP.  On the other hand, 

in striatal NoGo cells, weôd expect hypo-DA to lead to LTP, and hyper-DA to lead to 

LTD.  This suggests a set of hypothesis about the effects of DA reward phasic bursts and 

punisher phasic dips.  Reward bursts during Hebbian events should effectively reward 

striatal Go and PFC, but punish NoGo synapses.  Punisher dips during Hebbian events, 

on the other hand, should punish striatal Go and PFC, and reward NoGo synapses.  In 

accordance with these predictions, a recent computational model in conjunction with data 

taken from human medicated and unmedicated Parkinsonôs patients suggests that 
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unmedicated Parkinsonism (which would be a chronic hypo-DA condition) correlates 

with an emphasis on punishment learning at the expense of reward learning, whereas L-

dopa-medicated patients (which may be in a hyper-DA condition at times) often have an 

emphasis in reward learning at the expense of punishment learning (Frank, 2005; Frank et 

al., 2004). 

What particular learning is potentiated or depotentiated would depend on the 

particular DA target or targets affected.  In the case of hypo-DA, such as occurs in 

Parkinsonism, motor learning would be expected to be impaired in the early stages when 

the motor (i.e. most dorsal) striatum is most affected.  Accordingly, habit-formation in 

motor tasks is impaired by dopamine depletion of the dorsal striatum (Faure et al., 2005; 

Robbins et al., 1990) as well as selective lesions of dorsolateral striatum (Yin et al., 

2004).  Instrumental conditioning is impaired by lesions to the dorsomedial striatum (Yin, 

Ostlund, Knowlton, & Balleine, 2005) and there is evidence that reversal learning is 

impaired when DA is depleted there (O'Neill & Brown, 2007).  Procedural learning of 

cognitive tasks is also impaired in PD (Saint-Cyr, Taylor, & Lang, 1988) which would 

probably correlate with damage to some of the prefrontal corticostriatal pathways.  

Pavlovian and instrumental learning are both impaired when ventral striatal (NAc) DA is 

depleted (Parkinson et al., 2002; Smith-Roe & Kelley, 2000). 

In determining the likely effects of hyper-DA, the first thing to note is that 

psychostimulants such as cocaine and amphetamine can act as primary reinforcers for 

instrumental behaviors, as has been evidenced by experiments where rats learn to lever-

press for self-delivery of drugs into medial NAc shell and medial tubercle portions of 

ventral striatum (Ikemoto, Qin, & Liu, 2005).  As a hypothesis to be tested, it may be 
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proposed that chronic hyper-concentrations of DA are likely to lead to a state of chronic 

spurious reward reinforcement in the affected pathways.  It would be possible, for 

example, for the organism to accidentally learn the correct S-R mapping during initial 

training, but it would also be likely for the organism to learn an incorrect first S-R 

mapping if the organism ñtriedò the wrong behavior first because, essentially, the 

organism is under a chronic reward reinforcement state.  Moreover, unlearning of an 

incorrect mapping, i.e. reversal learning, would be difficult during a chronic hyper-DA 

state.  In fact, reversal learning impairment has been demonstrated for both cocaine 

(Jentsch, Olausson, de La Garza, & Taylor, 2002) and D-amphetamine (Idris, Repeto, 

Neill, & Large, 2005) delivery in monkeys and rats. 

1.2.4 Anterior Cingulate Cortex  

 

A number of computational models of basal ganglia learning treat the basal 

ganglia as an actor-critic model (Joel, Niv, & Ruppin, 2002).  The model in this 

dissertation is an example of this, possessing an actor pathway, corresponding to a dorsal 

striatal pathway, and a critic pathway which models, albeit in a much-simplified fashion, 

the influence of the dopaminergic nuclei.  One question that remains regarding actor-

critic systems, however, is, How does the actor manage to initially choose the correct 

behavior, so that it can be ñstamped inò by the critic?  This dissertation proposes that 

there is likely to exist an additional cortico-BG pathway (or more than one, perhaps) that 

is involved with explorative selection of ñrandomò behaviors, a óbabbleô pathway.  This 

pathway is engaged when the organism is ñstuckò in some sense, and is motivated to ñtry 

something, anythingò to change its situation.  A likely candidate would be a pathway 

running through the ventral striatum and anterior cingulate cortex. 
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1.2.4.1 ACC and Willed Behavior 

 

The human anterior cingulate cortex (ACC) consists of BA 24, 25, and 32 (see 

Figure 1.1), extending through the medial cortex surrounding the corpus callosum (Paus, 

2001).  As it has reciprocal connections with the (rest of) PFC, efferents to the motor 

cortex and even the spinal cord, and afferents from numerous limbic and brainstem areas, 

it is in a crossroads location between neural areas for representing drive/arousal state, 

cognition, and motor control (Paus, 2001).  Paus therefore suggests that it may be in a 

position to map intentions into actions, i.e., that it mediates ñwilled control of actionò.   

But what distinguishes willed control of action?  Norman and Shallice (1986) 

suggest: ñExperientially, a number of different sorts of tasks appear to require deliberate 

attentional resources.  These tasks fit within the following categories: 

1. They involve planning or decision making 

2. They involve components of troubleshooting 

3. They are ill-learned or contain novel sequences of actions 

4. They are judged to be dangerous or technically difficult 

5. They require the overcoming of a strong habitual response or resisting 

temptation.ò (pp. 2-3) 

It is intuitively the case that, when a person is initially learning a task, such as driving a 

car, a great deal of conscious attention is devoted to controlling the sequences of 

behavior, but as the learner becomes more experienced, less conscious focus is necessary 

and more of the task performance becomes ñautomatizedò.  Marvin Minsky has noted 

that consciousness is chiefly engaged when a person is faced with a non-routine problem 

that needs to be solved (Minsky, 1986).  Conscious will is essentially a flexible problem-
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solving method that is engaged when normal, habitual, largely unconscious behavior will 

not do. 

 There are, in fact, a number of neurological disorders that seem to demonstrate a 

selective impairment of willed control, and these involve damage to ACC and connected 

regions.  Alien hand syndrome patients have a limb that seems to spontaneously engage 

in grasping and manipulating behaviors without their consent (Biran, Giovannetti, 

Buxbaum, & Chatterjee, 2006).  Unilateral (contralateral to the alien limb) damage to 

ACC and neighboring supplementary motor area seems to be responsible, and the likely 

mechanism is that the ñalien handò is following well-learned automatized manipulation 

patterns that have become divorced from inhibition by the circuits that mediate willed 

movement control.  There is evidence that a portion of ACC may be involved in 

discouraging risky behavior such as drug abuse (Fishbein et al., 2005).  An fMRI 

experiment using a counting Stroop task shows that patients with attention-

deficit/hyperactivity disorder (ADHD) have bilaterally less activation of ACC (Bush et 

al., 1999).  Reduced activity of ACC has also been associated with mental fatigue in 

normal human EEG subjects (Lorist, Boksem, & Ridderinkhof, 2005). 

However, unilateral damage to ACC or to the connected corticostriatal circuitry 

can induce a much more serious dysfunction of will, abulia (Grunsfeld & Login, 2006; 

Tekin & Cummings, 2002).  Abulia is characterized by ñlack of spontaneous and 

purposeful behaviorò with major symptoms including ñ(1) difficulty in initiating and 

sustaining purposeful movements; (2) poverty of spontaneous movement; (3) reduced 

spontaneous speech; (4) increased response-time to queries; (5) passivity; (6) reduced 

emotional responsiveness and spontaneity; (7) reduced social interaction; and (8) reduced 



58 

 

interest in usual pastimes.ò (Vijayaraghavan, Krishnamoorthy, Brown, & Trimble, 2002)   

Bilateral lesions of ACC lead to an even more severe suppression of spontaneous 

behavior, akinetic mutism, which involves ña wakeful state characterized by marked 

apathy, mutism and lack of motor initiationò (Grunsfeld & Login, 2006).  Importantly, 

akinetic mutism can also be caused by damage to VTA and lateral hypothalamus, and in 

this instance, symptoms have been improved by dopamine medication (M. P. Alexander, 

2001).  The abulia case discussed by Grunsfeld and Login (2006) suffered from damage 

to the right caudate nucleus which is part of the fronto-subcortical circuit including the 

ACC.  Patients given a bilateral anterior cingulotomy for pain tended to manifest abulic 

symptoms (Cohen et al., 1999). 

 The above evidence suggests that there is a fronto-subcortical circuit (or set of 

circuits) involved with the initiation of willed action control (Tekin & Cummings, 2002).  

This circuit includes ACC and ventral striatum (ventromedial caudate), and requires 

DAergic activation from VTA.  There is evidence in rat studies that effortful behavior 

may require DA activation of D1 (but not D2) receptors in ACC (Schweimer & Hauber, 

2006), as well as the previously mentioned dependence on ventral striatal DA 

(Sokolowski & Salamone, 1998).  Another study in rat medial prefrontal cortex (which 

includes rat ACC) suggests that D1 and NMDA receptor activity is required for 

appetitive instrumental (i.e., R-O) learning (Baldwin, Sadeghian, & Kelley, 2002).  

Generally, it appears that the prelimbic area is involved with learning of instrumental 

contingencies (R-O learning) (Cardinal, Parkinson, Hall, & Everitt, 2002).  While 

prelimbic area is considered a separate region of rat medial prefrontal cortex from rat 
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ACC (Uylings, Groenewegen, & Kolb, 2003), in cats, the area corresponds to BA 32 

(Room, Russchen, Groenewegen, & Lohman, 1985), which in humans is a part of ACC.   

Thus, a cingulostriatal circuit is likely to be involved both with the cognitive 

control of willed, effortful action, and with the learning of associations/mappings 

between responses-actions (Rs) and their likely outcomes (Os).  Such associations might 

either drive outcome-prediction (R-O mapping) or motivated response selection (O-R 

mapping).  A prevalent current theory of the ACCôs role in cognitive control is that ACC 

cells engage in performance monitoring and their activity influences performance 

adjustment (Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004).  The performance 

monitoring is chiefly implemented by ACC whereas the actual mechanisms of adjustment 

lie in the lateral parts of PFC (dlPFC and vlPFC) (MacDonald III, Cohen, Stenger, & 

Carter, 2000; Ridderinkhof, van den Wildenberg et al., 2004). 

1.2.4.2 ACC and Consequence Monitoring and Prediction 

 

 ACC has ample anatomical connections from and to areas involved in emotional 

appraisal and arousal, including the amygdala (Vogt & Pandya, 1987), the insula which is 

believed to maintain a holistic estimate of internal homeostatic state of the body 

(Augustine, 1996; Craig, 2002), and midline thalamic nuclei (Paus, 2001).  ACC is also 

one the most densely dopaminergically (from VTA) innervated regions in primate brain 

(Allman, Hakeem, Erwin, Nimchinsky, & Hof, 2001).  (Interestingly, humans and great 

apes alone seem to possess a type of neuron known as óspindle cellsô in ACC (Allman et 

al., 2001); the specialized function of these isnôt well understood yet.)   The ventral 

striatum also projects to ACC (Paus, 2001; Voorn et al., 2004).  Such connections, along 

with connections to motor and prefrontal areas, would allow ACC neurons to monitor the 
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consequences of behaviors as well as the current general state of the organism, and 

accordingly trigger adjustments in motor behavior that might be more adaptive for the 

organism.  Moreover, parts of ACC connect with the hippocampal regions (Vogt & 

Pandya, 1987) supporting, perhaps, an ability of ACC to access/retrieve episodic memory 

records.  Episodic memory retrieval might allow predictions of likely outcomes (success 

or failure, reward or punishment) to be made based on the similarity of the current 

situation to previous similar situations the organism has been in.  Thus, ACC could allow 

both monitoring and prediction of consequences, and this information could drive 

adjustments to ongoing behavior. 

 Consistent with the ACCôs connectivity, it has been implicated in a wide variety 

of consequence monitoring and prediction assessments.  Many studies have discovered 

ACC monitoring of negative outcomes (Ridderinkhof, Ullsperger et al., 2004).  ACC 

activity is correlated with the subjective distress component of pain (Posner & Rothbart, 

1998).  Reduced reward (Bush et al., 2002; Ito, Stuphorn, Brown, & Schall, 2003; Shima 

& Tanji, 1998) or actual loss (Gehring & Willoughby, 2002) have been associated with 

ACC activity.  Response errors (the ñoops, I pushed the wrong buttonò type) can lead to 

the kind of ACC activation believed to be responsible for an error-related negativity 

(ERN) EEG signal (Bernstein, Scheffers, & Coles, 1995; Gehring, Goss, Coles, Meyer, & 

Donchin, 1993) , and losses also can trigger ERN (Gehring & Willoughby, 2002).  

Response errors that relate to negative feedback rather than self-monitoring also trigger 

ACC activity (Amiez, Joseph, & Procyk, 2005; Ridderinkhof, Ullsperger et al., 2004).  A 

popular hypothesis of ACC functionality, based on performance in tasks such as the 

Stroop task, is that conflict of response tendencies is monitored by ACC activity 
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(Botvinick, Nystrom, Fissell, Carter, & Cohen, 1999; Carter et al., 1998; MacDonald III 

et al., 2000; van Veen, Cohen, Botvinick, Stenger, & Carter, 2001).  However, not only 

errors and punishers, but also rewards, either expected or unexpected, may be signaled by 

ACC activation (Bush et al., 2002; Ito et al., 2003; Niki & Watanabe, 1979). 

Regarding prediction, much of error- and conflict-related activity may be 

interpreted as involving ACC activation in the face of high risk of error (Allman et al., 

2001; Brown & Braver, 2005).  Brown and Braverôs (2005) model suggests that phasic 

DA punisher dips may train ACC cells to respond to stimuli/conditions that likely 

correlate with impending errors.  ACC activity may increase when the organism needs to 

engage in error avoidance, for example by aborting the current behavior (Magno, Foxe, 

Molholm, Robertson, & Garavan, 2006).  ACC cells have been found that fire to the 

degree that the organism expects/anticipates being rewarded (Shidara & Richmond, 

2002).  Volatility of reward (Behrens, Woolrich, Walton, & Rushworth, 2007) or 

decision uncertainty (Ridderinkhof, Ullsperger et al., 2004) may trigger ACC activity, 

and these are essentially also predictions about outcomes.  Probably related to this is the 

fact that some ACC neurons have been found that fire when the organism has to perform 

explorative behavior in order to find the sequence of behaviors that will lead to reward 

(Procyk, Tanaka, & Joseph, 2000).  ACC related activity has also been discovered under 

conditions where the needed response or task is rare (Braver, Barch, Gray, Molfese, & 

Snyder, 2001). 

  To summarize, ACC seems capable of detecting a wide array of conditions and 

making predictions regarding consequences of behavior.  While the findings above may 

seem initially contradictory, the heterogeneous nature of ACC and the possibility of 
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interspersed subpopulations of cells suggest that the area may indeed represent a wide 

spectrum of (R-O) associations.  One possibility offered without follow-up here, is that, 

similar to the cellular organization of the striatum, there may be separate D1- and D2-

responsive cells.  The D2 cells, as in Brown and Braverôs model, would be ótrainedô by 

phasic dips to represent estimates of error-risk.  The D1 cells, on the other hand, trained 

by phasic bursts, would learn to represent anticipatory estimates of reward-chance.  The 

D1- and D2-trained cells could then drive behavior-selective cells in premotor and 

prefrontal cortex. The distinct roles of D1 and D2 receptors in ACC need to be more 

closely investigated. 

1.2.4.3 ACC and Response Modification 

 

 There appear to be in ACC separate regions involved in cognitive and emotional 

processing where the most dorsal and posterior components (mostly BA 24) are 

specialized in cognitive control and the most anterior and ventral parts (BA 32 and 25) 

are involved in emotional control (Bush, Luu, & Posner, 2000).  These parts seem to 

compete with one another suggesting a mechanism by which major depression (which 

has been correlated with hyperactivity in BA 25 (Mayberg et al., 2005)) can interfere 

with cognitive control and cognitive control, on the other hand, can be used to dampen 

depression (Goldapple et al., 2004).  In humans, the emotional (rostral) part of ACC has 

been shown to be especially active in obsessive-compulsive disorder patients (Fitzgerald 

et al., 2005), suggesting that overactivity in this area could trigger the kind of hijacking of 

behavior by ritualistic response that is seen in these patients.  The focus in this 

dissertation, however, is on the cognitive control portion of ACC. 
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 ACC outputs to a number of areas, both cortical and subcortical, that might be 

deemed output areas.  There are reciprocal connections to other parts of PFC, including 

dlPFC (Paus, 2001) and the frontopolar cortex (BA 10) (Mufson & Pandya, 1984; 

Petrides & Pandya, 2007).  There are also connections to the skeletomotor neurons and 

motor cortices, and the periaqueductal grey area (PAG) (Paus, 2001), a brainstem area 

which is involved in motor expression of emotional states (Panksepp, 1998), including 

vocalizations.  As it is involved in thalamocortical loops, ACC outputs to the ventral 

striatum (G. E. Alexander et al., 1986; Voorn et al., 2004), probably projecting, in part, to 

both limbic and associative portions of the output BG nuclei (Joel & Weiner, 1994).  

ACC projects also to the subthalamic nucleus (STN) (Canteras, Shammah-Lagnado, 

Silva, & Ricardo, 1990) which may provide a means for ACC to inhibit behavior, given 

STNôs role in the basal ganglia action-selection circuit (Frank, 2006; Mink, 1996).  These 

connections may allow ACC to exert a considerable influence on both specific low-level 

actions and higher-level plans/tasks. 

 In corroboration with the above anatomical connections, evidence has been found 

for ACC involvement in executive control.  Some evidence suggests that the mechanism 

by which ACC cognitive control operates is through amplifying/biasing excitation of its 

target areas, rather than, for example, direct inhibition of opposing behaviors (Egner & 

Hirsch, 2005).  ACC activity has been found in monkey (Shima & Tanji, 1998) and 

human (Bush et al., 2002) research which selectively correlates with a future decision to 

switch behaviors, for example, when less reward was received than expected.  ACC 

activity also is involved in response inhibition, for example, in suppression of response in 

Go/NoGo, or stop-signal tasks (Garavan, Ross, Murphy, Roche, & Stein, 2002; Magno et 
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al., 2006; Ridderinkhof, van den Wildenberg et al., 2004).  ACC activity may need to be 

engaged, also, for the organism to adapt to and select behaviors according to changing 

reward contingencies (Kennerley, Walton, Behrens, Buckley, & Rushworth, 2006).  Its 

connection to hippocampus may allow, for example, reestimation of reward probability 

given recent history.  Error-related negativity has been seen to precede more careful, 

longer RT trials (Gehring et al., 1993).  This suggests a role of ACC in raising the 

threshold of action selection after an error has been made or when there is more risk of 

error or response conflict (Brown & Braver, 2005; Kerns et al., 2004; Ridderinkhof, 

Ullsperger et al., 2004).  Especially relevant to this dissertation is correlation of some 

ACC cell activity at periods during tasks when the organism needs to discover a correct 

response or sequence of responses through trial-and-error (Amiez et al., 2005; Procyk et 

al., 2000).  Explorative behavior (as opposed to exploiting behavior) is also believed, 

however, to involve frontopolar cortex (Daw, O'Doherty, Dayan, Seymour, & Dolan, 

2006; Koechlin & Hyafil, 2007).  Given the involvement of ACC in trial-and-error, and 

its connection to frontopolar cortex (Mufson & Pandya, 1984), it may be hypothesized 

that the frontopolar cortex could be the output region of an exploratory behavior circuit 

consisting of ventral striatum, ACC, and FPC.  

 The model proposed in this dissertation hypothesizes an exploratory behavior 

circuit such as outlined above which is engaged when an organism is frustrated with the 

lack of current success at acquiring a reward.  It is plausible, given the types of 

consequence monitoring responses seen already in ACC, that there might be cells there 

that learn to represent a dislike of not being rewarded and/or a prediction that reward is 

not forthcoming without intervention.  These cells might project to lateral PFC (including 
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FPC) in such a way as to pseudo-randomly select a plan or behavior, though itôs not clear 

how the noise is injected into the system (perhaps thalamic noise?).  Such a circuit would 

amount to a óbabbleô circuit that is engaged when the organism doesnôt know how to 

proceed. 

1.3 Potential Contributions of Research 

 

As Section 1.1.5 suggested, computational modeling approaches may be of wide-

ranging interest to both the theoretical and applied sciences because they embody and 

suggest candidate theories of both principles and specific mechanisms of animal 

cognition.  The model proposed here should prove of interest not only to those interested 

in the study of animal behavior and cognition, but also to clinicians trying to understand 

the likely impact of pharmacological interventions and the etiology of dysfunctions of 

behavior and cognition, and also to engineers and computer scientists trying to engineer 

systems capable of flexible, adaptive behavior in a real-world environment. 

1.3.1 Neuroscientific Importance 

 

While there has been a good deal of focus in the neurosciences on studying 

functional mechanisms for visual perception or spatial localization, study of the 

mechanisms of executive control (which includes TOBS) is still at an early stage.  It is in 

some ways a difficult object of investigation for the empirical neurosciences because 

diverse brain areas are involved and these may be a good deal less specialized in their 

functionality than, for example, V1 and other early stage areas in the visual pathway.  

Areas such as prefrontal cortex, basal ganglia, the midbrain DA nuclei, and anterior 

cingulate cortex participate in a number of functional pathways, and the functional 
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ñmoduleò of executive control is densely connected with a host of other brain regions 

which exert not yet well-understood influences on the control process. 

 Computational models may serve as provisional theories to guide empirical 

investigations and to give researchers a preliminary understanding they can use as a point 

of departure.  The proposed model will constitute a candidate explanation of the 

functional relationships between TOBS/executive control, reinforcement learning, and 

dopaminergic neuromodulation; and of the division of labor between PFC, basal ganglia, 

ACC, and the DA nuclei in implementing TOBS.  A comprehensive model, even if it is 

ultimately incorrect regarding many of the particulars of mechanism, may guide 

researchers by suggesting experiments and testable hypotheses.   

The chief scientific benefit of such a model is probably its explanatory potential.  

TOBS is a critical component of higher mammalian behavior and its investigation is at an 

early stage.  Integrative theories such as (Miller & Cohen, 2001) are useful in providing a 

verbal and visual overview of how the different areas of brain may interact to produce the 

complex functionality of executive control.  Modeling research such as (O'Reilly & 

Frank, 2006; Tagamets & Horwitz, 1998) and this dissertation may build on these 

theories and on recent findings in the empirical neurosciences, in order to propose some 

specific mechanisms that might be operative.  The empirical neurosciences then may 

investigate which candidate mechanisms seem to be more likely.  The various models 

may then be refined according to later findings, until, ideally, there is a convergence on a 

single stable explanatory theory that captures the actual mechanisms of executive 

function. 
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1.3.2 Clinical Importance 

 

The model proposed in this dissertation, due to the centrality of the brain areas 

involved and the involvement of the dopaminergic system, may have implications for the 

understanding of a wide array of clinical dysfunctions and for DA pharmacology.  Frontal 

cortex and anterior cingulate cortex are, as reviewed in Section 1.2, centrally involved 

with behavior, and activity in both of these areas is regulated by the basal ganglia and the 

DA nuclei.  Though there are many details that may need to be added to the model, it 

may provide some initial insights into the neurological causes of a variety of disorders of 

behavior and cognitive initiation and control, especially disorders related to hypo- or 

hyper-DA receptor activity.  In particular, this model may offer insights about the 

different ways that reinforcement learning and performance of task-oriented behaviors 

may be disrupted by conditions such as Parkinsonism or psychostimulant intoxication. 

Hypo-DA activity (due to DA cell death) is the cause of Parkinsonism (Cools, 

2006) , and hypo-DA conditions have been associated with ADHD (Levy & Swanson, 

2001), schizophrenia (Grace, 1991; Yang & Chen, 2005), aging (Braver & Barch, 2002), 

mental fatigue (Lorist et al., 2005), and abulia and akinetic mutism (M. P. Alexander, 

2001; Tekin & Cummings, 2002).  Hyper-DA conditions have been associated with 

alcohol and psychostimulant intoxication (Grace, 2000), ADHD (Levy & Swanson, 2001; 

Zhuang et al., 2001), schizophrenia (Grace, 1991), and obsessive-compulsive disorder 

and stereotypy (Berridge et al., 2005).   

There is here a seeming paradox that some of these disorders are associated with 

both hypo- and hyper-DA.  However, we may begin to resolve this paradox when we 

consider the differential effects of DA surplus or deficit on different DA targets, a design 
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step which this model has taken.  For example, regarding ADHD, hypo-DA activity in 

ACC might interfere with cognitive focus by depleting the cognitive monitoring and 

behavior adjustment circuitry of DA, whereas hyper-DA activity in the ventral striatum 

might lead to ADHD distractibility symptoms due to an increased bias towards 

explorative behavior.  On the other hand, major depression might be triggered by hypo-

DA activation in ACC regions related to cognitive control, or hyper-DA activity in the 

BA 25 region of ACC whose activity is associated with distress.  Ultimately, it is 

important to understand the varying causes that may lead to some of the same diagnoses 

and symptoms, such that pharmacological or surgical intervention can be more 

selectively administered.  A major difficulty of pharmacological treatments is that they 

tend to have a more global effect than desired, activating or blocking receptors in other 

brain areas besides the preferred targets (though the differentiation of DA receptor types 

and development of receptor-specific antagonists and agonists has improved selectivity 

greatly).  What models such as the one proposed here suggest is that technology needs to 

be developed that can selectively influence specific pathways.  Means of selectively 

tweaking DA activity in different target regions could revolutionize clinical treatment of 

a bewildering array of affective, cognitive, and behavioral disorders.   

1.3.3 Technological Importance 

 

While the benefits of a better understanding of human cognition and bases for its 

dysfunction seem to be the most immediate interest for psychologists and neuroscientists, 

there are other contributions to be made by modeling human cognitive processes.  

Art ificial intelligence (AI), which may be regarded as both a sub-discipline of computer 

science (which is often considered an engineering discipline) and cognitive science 
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(which is an interdisciplinary study of mind) both are deeply concerned with mechanism 

as well as descriptive theory.  Earlier AI approaches have drawn their inspiration from 

automata theory, symbolic logic, information theory, etc., and were based on 

mathematical or (artificial) technological metaphors of how animal cognition might 

function.  Periodically, there have been attempts to integrate concepts and metaphors 

from the neurosciences into AI, but these explorations were done before neuroimaging 

(aside from EEG) became commonplace and there have been considerable advances in 

the functional understanding of the brain since the middle of the 20th century.  Some AI 

researchers had made wildly optimistic predictions about the progress that would be 

made using the old metaphors, and these have not come to pass.  While technological and 

mathematical metaphors may, in principle, arrive at designs for machines capable of 

human intelligence, progress will be greatly expedited by incorporating the discoveries 

and theories that come from the study of natural systems which have the benefit of 

having been designed over a period of millions of years by natural selection.  Animal 

brains are working exemplars of systems capable of conscious perception, and highly 

complex and adaptive behavior.   

 The model in this dissertation presents mechanisms which represent advances 

over what is yet the mainstream in robotics and AI.  Reinforcement learning of behaviors 

is an important advance.  Much current robotics and AI work still involves hand-coding 

of behavior or knowledge databases.  This leads to robots that may perform capably in 

particular limited domains, but are unable to adapt to new conditions in that domain or 

learn behaviors in other domains.  For example, there now exist robots that are pre-

programmed with algorithms for vacuuming or mopping a floor (see iRobotôs website at 
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http://www.irobot.com/ for descriptions and demo videos Roomba, Scooba, and other 

robots), but they perform no other function, nor can they learn any other.  It would be 

better to have a more mobile, legged robot, equipped with manipulators, that could be 

trained by its owners to vacuum the floor, or shovel snow in the driveway, clean the 

sidewalks, or any number of other routine, unpleasant tasks.  However, such a robot 

requires a system capable of a much greater level of adaptation and flexible intelligence 

than what currently exists.  Reinforcement learning is one missing component. 

Robots that possess a developmental learning period like young animals have, as 

opposed to being manually coded to perform behaviors, will be capable of far more 

general and open-ended behavior adapted to more complex and changing environments 

(Weng et al., 2001).  The addition of reinforcement learning mechanisms that allow the 

learning of behavioral sequences and other mechanisms that allow more than one task 

representation to be independently maintained, needs to be implemented for a robot 

capable of learning complex tasks, but the model proposed in this dissertation should at 

least provide a template for the learning of simple one-step S-R tasks.   

1.4 Overview of Dissertation 

 

 This chapter has sought to explain the area of investigation of the dissertation and 

the overall method of inquiry (Section 1.1), to provide a background neuroscience 

perspective on the modeling task (Section 1.2), and to express likely contributions of the 

research (Section 1.3).  It remains to explain the simulation model in detail (Chapter 2), 

to present simulation results and compare them with effects seen in the empirical 

neuroscience literature (Chapter 3), to lay out the theory suggested by the model (Section 

4.1), discuss predictions the model makes (Section 4.2), to reflect on the contributions 

http://www.irobot.com/
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and limitations of the research (Sections 4.3-4.4), and to suggest future research in 

continuation of the work of this dissertation (Sections 4.5). 

 

  



72 

 

Chapter 2: Simulation Method 

2.1 Modeled Environment and Organism 

 

 At the heart of this dissertation is a computational simulation model of task 

learning and performance, implemented as a set of (Mathworks) Matlab scripts running 

in a standard Windows/PC environment.  Figure 2.1 shows the overall functional 

structure of this model: that of a cognitive agent acting in a simple environment.  The 

overall approach involves simulating, at varying levels of abstraction, the organismôs 

brain, body, and environment, and how these interact during situations where the 

organism is required to perform particular tasks.  The initial goal for the author was to 

develop a neurocomputational model of task learning and performance that was 

consistent with the neuroscience literature as outlined in Section 1.2.  This involved 

testing the model on the learning and relearning of S-R task sets, starting from a ñnaµveò 

state where the model made no responses to the stimuli, but was rewarded for correct and 

punished for incorrect responses.  Once this model was capable of learning the task, it 

was then tested under various simulated conditions of dopamine surplus and deficit, 

under the stages of initial learning, learned performance, and reversal learning, so that the 

effects of DA manipulations on task learning and performance could be observed.  

Together, the model architecture and the testing results embody a preliminary theory of 

TOBS (which will be discussed in Chapter 4). 

 The organism and environment depicted in Figure 2.1 are extremely abstracted.  

The organismôs ñbodyò is essentially a floating eye or camera, capable of panning left 

and right and tilting up and down across a nondescript visual (128x128 pixel) ñarenaò 

(represented as black in Matlab) upon which a single colored square (Red, Green, Blue, 
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or Yellow) may be projected.  The ñinvisible trainerò of the environment rewards or 

punishes this camera organism according to whether it executes a Nod (sinusoidal tilting) 

or a Shake (sinusoidal panning) after it is presented with a particular color.  The 

organism, however, also has an ñearò which can be presented with brief (simulated) tones 

corresponding to the twelve notes of a musical chromatic scale: 

C,Db,D,Eb,E,F,Gb,G,Ab,A,Bb,B.  It can be rewarded with simulated food deliveries or 

punished with simulated shocks, and it maintains an awareness of its internal state of 

hunger and/or satisfaction.   The system is roughly analogous to an immobilized primate 

facing a computer monitor and being rewarded with fruit juice when it makes a proper 

saccade response to a stimulus presented on the monitor.  The addition of auditory tones 

and punishers creates a potentially more general and flexible system for testing task 

learning and unlearning mechanisms. 

 The ñbrainò of the camera organism consists of a cognitive processing and a 

motor control module.  The cognitive processing module, given the current visual, 

auditory, visceral, and reward/punisher inputs, will select an appropriate behavior 

command for implementation.  There are three such commands: Track (the default) in 

which the camera tries to center its color-sensitive (16x16 pixel) fovea on any stimulus 

presented in its (64x64 pixel) color-insensitive peripheral field, Nod in which the camera 

centers itself in the arena and tilts up and down twice, and Shake in which the camera 

centers itself in the arena and pans left and right twice.  Potentially, simultaneous 

commands may be issued; for example, Nod and Shake may occur together leading to a 

two-dimensional oscillatory movement.  The motor control module implements the 

mapping between active behavior commands and the immediately appropriate tilt or pan 
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behavior/s.  It is the cognitive processing portion of the model that will mainly be 

described in Section 2.3, as it is the portion which is implemented with discrete 

neurocomputational units rather than being simulated through more basic procedural 

algorithms. 

2.2 Task/Trial Structure 

  

The model has, designed into its structure, representations of distinct colors (Red, 

Green, Blue, Yellow) and distinct tones (C through B on the chromatic scale), and also 

representation of three behaviors (Track, Nod, Shake).  Working memory traces are 

implemented in a rigid fashion with tone working memory always remembering the last-

heard tone and color working memory lasting from the time the color is seen in the 

organismôs fovea until a time shortly before the occurrence of the next color square 

presentation trial (see Section 2.3.5).  However, there are no representations of tasks per 

se wired into the model.  Rather, based on working memory traces of tones and colors, 

the simulated organism must learn what stimuli might represent different tasks and what 

mappings are appropriate between the combination of task and current stimulus to the 

correct behavior response.  Through rewards and punishers, the model is able to learn 

such mappings and unlearn them in favor of new mappings.   

Prior to testing of the model under hypo- and hyper-DA conditions, the model 

was tested under a ñfullò task set consisting of two tasks: BLUE-SELECT and RED-

SELECT.  The start of these tasks are respectively signaled by the occurrence of a C or 

an Eb tone.  During a multi-trial run, a random C or Eb tone is chosen after 1-5 

(randomly selected) trials under a current task.  For each trial under a task, either a Blue 

or a Red square is projected randomly to a place somewhere in the modelôs 64x64 retina.  
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By default, the model is always executing a Track behavior command which causes it to 

foveate on any object presented in its retina.  After it has foveated the object so that it can 

see its color, however, the model is expected (by the ñinvisible trainerò) to make a Nod or 

Shake response.  Under the BLUE-SELECT task, the model is required to Nod in 

response to Blue squares and Shake in response to others (Red only because only Blue 

and Red were used in the results documented in this dissertation).  Under the RED-

SELECT task, the model is required to Nod in response to Red and Shake in response to 

other colors (Blue).  The model is rewarded for a correct response, punished for an 

opposite response (Nod instead of Shake or vice versa), and neither rewarded or punished 

for ignoring the square (and simply fixating on it, instead, according to the dictates of the 

default Track behavior). 

Essentially, training of the model consists of presenting a lot of trials to the model 

until its learned performance is satisfactory.  When it has learned the regular ñfullò task 

set (using Blue and Red squares and C and Eb tones), it has learned BLUE-SELECT, 

RED-SELECT, and the cues (in this case, auditory) which signal these.  Another way of 

analyzing what is learned is to say that the model has learned mappings of four (stimulus) 

conjunctions to behaviors, as follows: 

¶ C AND Blue -> Nod 

¶ C AND Red -> Shake 

¶ Eb AND Red -> Nod 

¶ Eb AND Blue -> Shake. 

The first two conjunctions contain the learning of the BLUE-SELECT task, and the latter 

two the learning of the RED-SELECT task.  As will be shown, the model is capable of 
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learning these four conjunctions, although there are learning capacity issues, probably 

due to the small number of neural units allocated in the model.   

 The model passes through three simulation phases.  In the first, the training phase, 

the model is presented with the four conjunctions of the full task set until it has learned 

all.  In the second, the maintenance phase, the model is simply tested for a few runs on a 

random sequence of conjunctions to see if the model retains its correct responses.  Then, 

finally in a reversal phase, the model is trained on the reversal task set, i.e., the following 

four conjunctions: 

¶ C AND Blue -> Shake 

¶ C AND Red -> Nod 

¶ Eb AND Red -> Shake 

¶ Eb AND Blue -> Nod. 

Essentially, the C tone switches from being a signal of BLUE-SELECT to being a signal 

of RED-SELECT.  Likewise, Eb switches from being a signal of RED-SELECT to being 

a signal of BLUE-SELECT.  The model, trained under the initial task set, has to unlearn 

the old conjunctions and relearn the new ones.  As will be seen, it is successful at this, 

and, although it is not documented in the dissertation, the model is also capable of 

relearning the old task set after the reversal task set is learned.  The results presented in 

Section 3.1 show the performance of one instance of the model (each instance being a 

different randomized set of initial model weights of the neural units).  Although 

exhaustive data was only collected and analyzed for one model instance (because of the 

immense length of time for training and the volume of data generated), performance 

appeared to be typical, given adequate model training time.   
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 As will be explained in further detail in Section 2.3.14, a simplified task set was 

used for the hypo- and hyper-DA tests so that data could be collected for several model 

instances, and statistics could be collected.  To summarize, however, training, 

maintenance, and reversal phases were done for multiple DA conditions, but only two 

conjunctions were used: one conjunction, C AND Blue -> Nod, in the training and 

maintenance phases, and the other, C AND Blue -> Shake, in the reversal phase.  The 

likely effects of DA conditions on the performance of the model on the full task set can 

be inferred from understanding the effects of the same conditions on the 1-conjunction 

task sets. 

 Figure 2.2 shows the (overall, correct) performance of the model after it has been 

trained on the full task set (and therefore is a sneak preview of the results presented in 

Section 3.1.1) , and also presents a typical testing (as opposed to training) simulation run.  

In a simulation run (testing or training), there are 1,000 simulation iterations with each 

iteration representing roughly 100 ms of ñneural real-timeò, so that the total run simulates 

a period of 100 s.  Within a run there are trial blocks of (randomly) 1-5 trials each.  At the 

beginning of each trial block, a random C or Eb tone (500 ms: 5 iterations) is presented 

which selects the reward/punisher contingencies (e.g. BLUE-SELECT vs. RED-

SELECT), followed by a 2.5 s (25 iteration) delay period.  Each trial within a block has 

the following temporal structure: a Blue or a Red square is projected randomly to a place 

somewhere in the modelôs 64x64 retina for a period of 3 s (30 iterations), and then a 2.5 s 

(25 iteration) delay period follows the visual stimulus offset.  If a response is made, either 

a reward or a punisher of 500 ms (5 iterations) is delivered, when the Nod or Shake 

execution is almost completed.  The ñinvisible trainerò rewards or punishes the model for 
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responses made between the onset of the colored square and a period 1500 ms (15 

iterations) after its offset.  No partial trial is allowed to happen near the end of the 

simulation run; no new stimuli are presented if sufficient time does not remain for a 

whole trial.  Each simulation run typically consists of about 15 trials. 

 While testing runs were described above, simpler simulation training runs are 

used for training the model in the training and reversal simulation phases.  Each training 

run maintains the same general structure as the testing runs described above, but only one 

color and one tone are used in a given run, with the result that the model is only trained 

on one conjunction during any run.  In the training phase, the model is trained, one 

conjunction at a time; generally the model learns a conjunction in 1 or 2 runs, though 

sometimes more are required.  After all 4 conjunctions have been trained, a test run is 

done to verify that all conjunctions remain learned.  Often, in fact, some conjunctions 

have been unlearned due to interference effects (described in Section 3.1.1.2), so another 

iteration of training is done on the failed conjunctions, followed by another test run to see 

if there are any remaining failing conjunctions.  This process iterates until the test run 

reveals that all conjunctions have been learned.  Finally, a special kind of test run is done 

wherein learning is turned off and any DA manipulations (not applicable in the full task 

set data) are reset to a normal level.  Performance data for the whole training simulation 

phase is collected from this ending test run which is shown in Figure 2.2.  The trained 

model is then subjected to a maintenance simulation phase which consists of 5 testing 

runs (of the normal variety) from which performance data is collected.  Finally, the model 

is subjected to a reversal simulation phase whose training process is essentially identical 

to the training simulation phase, but the reversal task set is used rather than the normal 
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task set.  The special test run from the end of the reversal simulation phase is shown in 

Figure 2.3.  Figures 2.2 and 2.3 illustrate the learned performance of the model and that, 

save for a few missed response or behavior repetition errors, the learned performance of 

tasks is high, both under initial and reversal learning conditions.  

 For a more intuitive view of the modelôs performance, movies have been made 

available online that show the dynamic activity during various model simulations.  The 

URLs for these are given in Table 2.1.  Movie 2.1 shows the performance of the model at 

the end of the training simulation phase; the run is identical to that shown in Figure 2.2.  

Movie 2.2 shows the performance of the model at the end of the reversal simulation 

phase; this run is identical to that shown in Figure 2.3. 

2.3 Model Architecture 

 

It remains to explain the architecture of the brain of the simulated organism.  This 

brain essentially consists of a number of interconnected rectangular layers of 

neurocomputational mean firing-rate units.  The layers correspond to populations of 

neurons within areas of mammalian brain.  Certain input units take on values set by non-

unit parts of the model that are involved with stimulus and working memory 

representation.  Other output units drive the simulated behavior of the model.  Some of 

the layers have their activity and synaptic learning modulated by the modelôs dopamine 

mechanism.  This section will explain the units and layers of the model and how they are 

collectively able to learn and perform the task sets described in Section 2.2. 

2.3.1 Neural Unit Architecture 

 

Figure 2.4 schematically shows the structure of the neural units as well as the 

dynamic equations.  Each unit is a simple mean firing-rate unit that takes a weighted sum 
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of the output of units, subjects it to a sigmoidal ñsquashing functionò, and moves the 

output value closer to the sigmoided net input sum.  The weighted sum for unit Ὦ at time ὸ 

(in simulation iterations) is defined by 
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where ὼὯ is the output (ranging from 0 to 1) of unit Ὧ and ύὮὯ is the weight from unit Ὧ to 

unit Ὦ.  The squashing function for the units is defined by 
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where ‍ is the gain of the sigmoid, setting the steepness of its central slope, and † is the 

threshold of the sigmoid, the location along the ὼ axis where the center of the slope is.  

The shape of this function is shown on the unit schematic in Figure 2.4, and the output 

range of the function is from 0 to 1 with the value being exactly 0.5 at ὼ= †.  The 

sigmoidal function, however, is not applied to only the net input, but rather the net input 

plus some Gaussian noise.  The squashed net input may be defined as 

(3) )),0()(()( nNtits j +=q  

where ὔ(0,ὲ)  is a random normally distributed variable with standard deviation ὲ. 

 The output of the unit is defined by 
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where Ў is a growth/decay rate.  This means that the change in the output at iteration ὸ is 

the scaled difference between the squashed net input (plus noise) and the previous output, 

which means that the output over time will track the sigmoided net input.  The output, 

ranged between 0 and 1, probably may be thought of as representing the mean firing 

frequency of an individual neuron with 0 representing minimal activity and 1 
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representing the maximum frequency of firing.  Alternatively, the output may represent 

the proportion of neurons regarded as active within a small population of neurons. 

 It is the normal dynamic of the units that has so far been described.  However, 

there are a few modifications to the default unit performance which the model utilizes.  

First, for many of the units, the DA mechanism can drive changes in the weights ύ.  This 

will be explained in more detail in Section 2.3.13.  The sigmoid thresholds † can be 

modulated, either by the DA mechanism (see Section 2.3.8), or by the lateral-inhibition 

mechanism which will be explained in Section 2.3.2.  More sparingly, the sigmoid gain ‍ 

is modified, specifically in the mechanism for the generation of neural noise, which will 

be explained in more detail in Section 2.3.10. 

2.3.2 Layer Structure and Connectivity 

 

The simulation model consists of a number of layers of one or more units, each 

corresponding with a neuron or population of neurons in a particular area of mammalian 

brain.  Layers consisting of more than one unit are arranged in a rectangular array in the 

model (typically 4x4 or 8x8).  Layers are interconnected through mostly excitatory (but 

sometimes inhibitory) feedforward connections.  The topology of these connections is 

organized by afferent arbors of essentially three types: full, uniform sparse, and one-to-

one.  For full arbors, the feedforward connection is fully connected so that each afferent 

arbor of a destination unit consists of the entire source layer of units.  The uniform sparse 

arbors are like full arbors with some of their connections omitted, those connections 

being randomly determined by each weight having the same probability of inclusion.   In 

one-to-one arbors, each unit in the destination layer connects only to the equivalent unit 

in the source layer, e.g. in connection between two 4x4 layers, source unit (2,3) connects 
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to destination unit (2,3).  The initial weights for all arbors are set randomly when a new 

model instance is created.  Each layer has a Gaussian weight distribution from which 

weights are drawn. 

In the results (Chapter 3) and also in the following explanation of the model, 

aggregate activity is often measured in layers.  The type of activity marked as ósumô on 

the plots consists of the summation of all of the unit outputs at the current time step.  

(Thus, an 8x8 layer may have a sum value between 0 and 64.)  The type of activity 

marked as ótsumô is a thresholded sum whereby each unitôs activity is subjected to a hard 

threshold (e.g. 0.7) and the sum given is the number of units that cleared the threshold.  

Some of the layers have their activity and/or their learning modulated by the DA 

mechanism, as will be described in later sections.  Some of the layers have their 

collective activity modulated by a competitive lateral inhibitory mechanism known as k 

winners-take-all (kWTA) (O'Reilly & Munakata, 2000).  The heuristic used to implement 

this is that all of the excitatory units that compete with one another are lumped into a 

common pool.  Generally, the pool consists of a single layer of units, but in the model 

there is an instance (for the Request units) where two layers are pooled together.  

Essentially, the sigmoided net inputs ί(ὸ)  (Equation 3) are calculated for each of the units 

in the pool.  In the event that more than Ὧ units of the pool clear the threshold of 

activation (the unadjusted †), the top Ὧ+ 1 of these sums are examined, and the threshold 

† for the whole pool is adjusted so that it lies between the Ὧth- and (Ὧ+ 1) th-highest 

sums.  For the layers that use kWTA, the gain ‍ is set very high so that the threshold is 

sharp.  Thus, generally only a maximum of Ὧ units will become active over threshold 

during a simulation iteration.  This algorithm is a heuristic implementation of what would 
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be a more complex circuit involving inhibitory interneurons in a global negative feedback 

circuit.  Use of kWTA allows distributed sparse representation ósizesô to be set in the 

model so that, for example, a Plan unit representation (see Sections 2.3.11 and 2.3.13) 

may consist of 5 units, and there may be different sets (hopefully non-overlapping) of 5 

units for each stimulus conjunction represented.  It also allows lateral inhibition to be 

more easily implemented in layers where there is only one desired winner. 

2.3.3 Functional Overview of Model 

 

Figure 2.5 shows an overview of the functionality of the model.  The model 

consists of four modules.  Three of these involve processing of Ss, Rs, and Os, and the 

final one involves the communication and mapping between these.  The Response 

Processing (R) block is essentially the motor control module from Figure 2.1.  This 

receives behavior commands for Nod, Shake, and Track, and also the black-and-white 

64x64 retinal spatial map information that is needed to guide Track direction, and outputs 

the immediately appropriate pan/tilt action/s.  The other three blocks constitute the 

cognitive processing module of Figure 2.1.   

The Stimulus Processing (S) block takes immediate visual retina information, 

from both the full and the foveal retinal regions; and also auditory tone information; and 

outputs information used by the other three blocks.  It forwards the spatial visual map 

information to the R block.  It also detects whether either the color or the tone is 

novel/unfamiliar, forwarding this information to the O and Behavior Selection blocks.  It 

sends a signal detecting the presence of a target square to the Behavior Selection block.  

Finally, it maintains and updates the working memory of the last-seen colors and last-

heard tone and forwards these to the Behavior Selection block. 
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The Outcome Processing (O) block takes stimulus inputs involving primary 

rewards and punishers, which signify food and shock delivery, respectively.  It also 

receives the novelty signal from the S block, and a ñvisceral stateò signal which 

increments as the simulated organism grows more ñhungryò or otherwise unhappy about 

not being rewarded.  From these signals, it outputs two signals: a signal that measures the 

ñfrustrationò of the organism, and the DA ñactivity-oriented motivationò signal which is 

one of the focuses of this study. 

The Behavior Selection block (detailed in Figure 2.6) is the ñpseudo-homunculusò 

that allows the model to map information from the S and O blocks to a behavior selection 

in the R block.  Thus, it might be also considered the ñdecisionò or ñchoiceò module.  It 

takes information about color and tone working memory, (visual) target presence, and 

novelty from the S block; and the frustration and DA signals from the O block; and 

generates a behavior command (Nod, Shake, Track) which it forwards to the R block. 

2.3.4 Response Processing Module 

 

Figure 2.6 shows mainly the Behavior Selection module, but also shows in more 

detail the R block.  An Exec (execute) unit exists for each of the three behaviors: Track, 

Nod, and Shake.  The Track Exec unit can be thought of as having constant activation, 

but the activation is inhibited by the Nod and Shake Exec units.  The Nod and Shake 

Exec units are activated by an equivalent pair of Init (initialization) units, which are a part 

of the Action Gating mechanism, when the appropriate Init cell activity clears a threshold 

(0.65).  Once the Nod or Shake Exec units are activatedðand it is possible for both to be 

activated simultaneouslyðthey stay active until the motor behavior is completed, 

releasing the Track Exec unitôs activity when they complete.   
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Where the correspondents of the three Exec units might exist in mammalian brain 

is not entirely clear.  The units here are presumed (in Figure 2.6) to correspond to 

populations of frontal neocortical neurons (probably in PMC or SMA) that have a 

recurrent excitatory connection that gives them persistent activation once excited, and 

must then be inhibited by some signal of successful completion of the behavior.  How 

precisely premotor frontal cells implement behavior sequences seems poorly understood 

at this stage.  In this dissertation, they are treated like central pattern generators (Grillner, 

2003) that cause the motor apparatus to first center the modelôs gaze, then perform the 

oscillatory movements, then finally deactivate when the movements end in the centered 

position. 

It is also possible that Track, Nod, and Shake behaviors, which involve head 

orientation, could be implemented by brainstem areas, including the interstitial nucleus of 

Cajal (Klier, Wang, Constantin, & Crawford, 2002) and the superior colliculus which is 

the locus of the essential circuitry for oculomotor control (Klier, Wang, & Crawford, 

2003; Trappenberg, Dorris, Munoz, & Klein, 2001).  The basal ganglia has extensive 

control over both neocortical and brainstem areas (Grillner et al., 2005), so either locus 

for head orientation control in these tasks is plausible. 

2.3.5 Stimulus Processing Module 

 

Central to the simulated modelôs sensorium is a 64x64 retina (see Figure 2.1).  

This is implemented as four fields: a 64x64 set of units which correspond to the color-

insensitive rod cells, and three foveal sets of 16x16 units which correspond to color-

sensitive cone cells: a set each for red, green, and blue (Rolls & Deco, 2002).  The 64x64 

rods drive the Track behavior through an algorithm that calculates, for the top, bottom, 
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left, and right 24 pixel-width borders, average activations of the rod map.  If the average 

intensity of a border is over a threshold then, the camera/eye pans and/or tilts in that 

direction.  This automatic tracking mechanism is disabled when Track Exec unit activity 

is suppressed.  The rods field would probably also drive the Stimulus Presence unit, 

potentially through a thresholded mean algorithm, though it is implemented more simply 

in the model. 

As for the three sets of 16x16 cone color maps, activity from these is passed into a 

Red vs. Green, Blue vs. Yellow color opponency algorithm (Rolls & Deco, 2002) which 

outputs its results to a set of four Colors In units (Red, Green, Blue, Yellow).  For 

example, the Red Color In unit takes as its activation value the average (over the whole 

16x16 fovea) Red cone activation minus the average Green cone activation.  These 

Colors In units allow the modelôs immediate detection of colors and are updated on each 

simulation iteration according to where the camera/eye is directed within the 128x128 

pixel arena.  Color opponency in animal vision is implemented as early as the lateral 

geniculate nucleus in the visual processing pathway, and the color-sensitive (Colors In) 

units in the model may correspond to cells in V4 (Rolls & Deco, 2002).  Although only 

red and blue squares are actually utilized in this dissertation, the model potentially allows 

representation of colors which could be represented by mixtures of primary color 

features. 

The other major stimulus input for the model is auditory tone.  There are 12 Tones 

In units, each corresponding to a pitch on the musical chromatic scale (C through B).  

While it is not clear that humans have cells that are receptive to musical pitch per se, the 

auditory pathway is tonotopically organized, from as early as the cochlea to the primary 



87 

 

cortex (A1) cells (Kolb & Whishaw, 2003).  Therefore, tentatively, the Tones In cells 

could be said to reside in A1.  As with the color units, it is actually possible that multiple 

tone presences could be simultaneously represented.  However, only single brief C and 

Eb tones are utilized for this dissertation. 

Both the Colors In and Tones In units have a set of working memory (WM) units 

associated with them, i.e., 4 Color WM units (Red, Green, Blue, Yellow) and 12 Tone 

WM units (C through B).  Both sets update their state whenever a new color/tone is 

presented, but their state maintenance in the absence of change is different for the 

different modalities.  The maintenance latency for color working memory is 5 s (50 

iterations), and it is essentially indefinite for tones.  The rationale for this is that the tone 

working memory needs to be maintained over multiple trials whereas the color working 

memory should only be active for the duration of a single trial.   How the working 

memory system learns these respective durations is a question beyond the scope of this 

dissertation, and the working memory is implemented algorithmically rather than through 

afferent neural units.  Both modalities of working memory are presumed to reside 

somewhere in PFC in mammalian brain, probably in the ventrolateral portion.   

Distinct ñwhatò and ñwhereò pathways have been proposed for both visual 

(Milner & Goodale, 1998; Ungerleider & Mishkin, 1982; F. A. W. Wilson, Ó Scalaidhe, 

& Goldman-Rakic, 1993) and auditory (Arnott, Grady, Hevenor, Graham, & Alain, 2005) 

perception.  Clearly, this model is representative of ñwhatò (or object) processing, since 

the tasks involve recognizing a (color or tone) identity rather than a spatial location.  

Whereas the ñwhereò (or spatial, or dorsal) visual pathway runs from the retina through 

the superior colliculus, pulvinar, and posterior parietal cortex (Milner & Goodale, 1998), 
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to arrive in dlPFC where it participates in spatial working memory (Courtney, Petit, 

Maisog, Ungerleider, & Haxby, 1998; Smith & Jonides, 1999; F. A. W. Wilson et al., 

1993); the ñwhatò (or object, or ventral) visual pathway runs from the retina through 

LGN, primary (V1) and extrastriate visual areas (V2, V4, etc.), and inferotemporal cortex 

(Milner & Goodale, 1998), to arrive in vlPFC where it participates in object working 

memory (Smith & Jonides, 1999; Ungerleider, Courtney, & Haxby, 1998; F. A. W. 

Wilson et al., 1993).  The auditory ñwhereò and ñwhatò perception pathways also are 

arrayed dorsally and ventrally, respectively, with inferior frontal areas being activated 

during pitch tasks (Arnott et al., 2005). 

There is also a unit in the model for detecting novel stimuli in the S block.  This 

Novelty unit activates for a 500 ms (5 iteration) burst for the first three times that a color 

or a tone is presented, and ignores the same color or tone thereafter.  There is likely to be 

a mechanism in the medial temporal lobe (hippocampus and parahippocampal regions) 

for novelty detection (J. E. Lisman & Otmakhova, 2001; Stern, Sherman, Kirchhoff, & 

Hasselmo, 2001). 

Figure 2.6 shows the final stage of units from the S block which are inputs to the 

Behavior Section module.  The activation of these units is set algorithmically rather than 

through neural activation propagation. 

2.3.6 Outcome Processing Module 

  

As Figure 2.6 shows, there are two output units in the O block: the Frustration 

unit and the DA Signal unit, and these are likely to have neural correspondents 

somewhere in ACC, and in the midbrain DA cells, respectively.  The Frustration unit 

measures the amount of hunger and/or frustration that the simulated organism is 
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experiencing as it continues not to be rewarded.   According to Figure 2.7, the visceral 

state of the organism sends an excitatory signal that steadily increases as the simulated 

organism becomes hungrier.  As Figures 2.7 and 2.8 show, the Frustration unitôs activity 

is reset, through inhibition, by the occurrence of (food) rewards.  Presumably, if visceral 

state is the source of the ramping signal, this state may also be reset by temporary 

satiation.  Alternatively, the Frustration unit might have its ramping up driven by, instead 

of a visceral state signal, more of a top-down expectation-of-reward signal which is 

active when the organism is in an environmental context where they are expecting to 

procure rewards.  In any case, the presumed correspondent area of the Frustration unit in 

animal brain is somewhere in the ACC, as there is much evidence for consequence 

monitoring and prediction activity in this area (see Section 1.2.4.2).  As a part of PFC, 

ACC cells may innervate VTA directly, or they may exert influence on VTA indirectly, 

through intermediate PFC cells, or through a ventral striatal (NAc) pathway (see Figure 

1.7).   

Figure 2.7 shows that the DA Signal unit, which corresponds to SNc and VTA 

cells, is excited by the Frustration unit, and also by Reward and Novelty unit activity; and 

inhibited by Punish unit activity.  Figure 2.8 shows these influences on the DA signal in a 

sample model run.  A base-level DA activity level is maintained tonically, and the 

afferents superimpose their influence on this.  As Frustration unit activity ramps up, it 

drives up the tonic DA signal until a reward resets the frustration.  Additionally, rewards 

cause massive phasic spikes in the DA signal and punishers massive phasic dips.  As will 

be seen (Section 2.3.13), the extreme phasic levels contribute learning signals (LTP and 

LTD) to the rest of the model, and the tonic level sets the threshold of the Action and 
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Babble Gating modules.  The likely anatomical connection between the Frustration and 

DA Signal units was suggested above.  There are many potential locations of the Reward 

signal, including the insula and the lateral hypothalamus.  One possibility for the source 

of the Punish signal might be the serotonergic raphe nuclei which could possibly 

phasically signal punishment (Daw et al., 2002).  It is likely, though, that an excitatory 

aversive signal could increase activity in the inhibitory, rather than DA-ergic VTA cells 

(Ungless et al., 2004).  The source of this excitatory signal could be ACC or amygdala 

since both of these areas have excitatory responses to aversive consequences or stimuli.  

The Novelty unit to DA Signal unit connection may correspond to an indirect pathway 

from the hippocampus and parahippocampal areas to VTA (J. E. Lisman & Otmakhova, 

2001).  

2.3.7 Behavior Selection Module 

 

It is the Behavior Selection module, shown in Figure 2.6, which allows S and O 

block information to influence the R block.  Essentially, this module consists of three 

pathways: a frontal neocortical, dorsal striatal óactorô pathway which mediates S-R 

mappings; an anterior cingulate, ventral striatal óbabbleô pathway which mediates random 

O-R mappings triggered either by frustration or novelty; and finally a DA-ergic ócriticô 

pathway which innervates both of the above pathways, affecting both the threshold of 

activation and learning. 

The óactorô pathway begins at the Stimulus Presence and Color and Tone WM 

units.  These are fully connected to an 8x8 set of Plan units by learnable weights that 

initially start out very small.  These use a kWTA mechanism such that Ὧ= 5.  This 

allows representations of size 5 to develop for conjunctions of activity of the S block 
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afferent units.  The Plan units, in turn, are fully connected through more learnable 

weights to two 4x4 sets of (Nod and Shake) Request units which compete to select Nod 

or Shake behaviors.  Both sets of Request units are lumped into the same kWTA pool 

which only has one winner.  Thus, although there are only two behavior choices, there are 

multiple Nod and Shake units that may each potentially specialize in responding to 

different 5-unit Plan patterns, so the representation allowed for, for example, Nod could 

be a disjunct of multiple conjunctions.  This is needed in a situation where the system 

must learn something like:  

(C AND Blue) OR (Eb AND Red) -> Nod. 

The Request units drive the basal ganglia Action Gating mechanism which allows or 

vetoes the actual response of the Nod or Shake Exec units.  In mammalian brain, the Plan 

units may reside in either PFC or in premotor areas like PMC.  The Request units are 

presumed to reside in PMC or SMA, as are the Exec units in the R block.  Section 2.3.8 

will discuss possible basal ganglia anatomical connectivity to the frontal neocortical areas 

involved in the requesting and executing the desired behavior.  

 The óbabbleô pathway begins at the Frustration and Novelty units, which both 

innervate the Babble Request unit in a way such that activation of either triggers Request 

activity.  The Babble Request unit drives a basal ganglia (ventral striatal) Babble Gating 

mechanism that, in turn, drives the 8x8 set of Babble units.  Not shown in Figure 2.6 is 

the additional factor of ñneural noiseò that drives the Babble units randomly (see Section 

2.3.10) whenever there is a stimulus present.  The Babble units, however, require the 

additional gating of the basal ganglia mechanism (described in Section 2.3.9).  There is a 

single winner in the 8x8 set of Babble units, and the result is that the winner is essentially 



92 

 

random.  The Babble units connect through random sparse connections to the Plan and 

Request units which means that these are randomly activated as a result of a babble being 

gated.  It is through this mechanism that a random choice of a Nod or Shake behavior 

command is made when the model is prompted through frustration or novelty to ñtry 

something newò.   The anatomical evidence for a babble pathway is reviewed in Section 

1.2.4.  The Frustration to Babble Request unit projection is probably an intra-ACC 

connection.  The fact that the hippocampal regions project to ACC (Vogt & Pandya, 

1987) suggests the likely correspondent of the Novelty to Babble Request unit 

connection.  ACC projects, in large part, to the ventral striatum (Voorn et al., 2004), 

which would then project, through the BG output, back to ACC.  This would correspond 

to the Babble Gating connections.  As for the Babble units, they may correspond to either 

ACC or FPC units, as discussed in Section 1.2.4.3.  ACC connects to both PFC and 

premotor units (Paus, 2001), and FPC projects to other (more posterior) regions of PFC 

(Koechlin & Hyafil, 2007); so these pathways may potentially implement the Babble to 

Plan and Request unit connections. 

 Finally, the ócriticô pathway spreads out from the DA Signal unit to the Plan and 

Request unit synapses, and to the Action and Babble Gating modules.  The Action Gating 

module receives its DA-ergic input from the SNc, as the dorsal striatum receives its 

innervations from that midbrain nucleus.  The Babble Gating and Plan and Request units 

receive their DA-ergic innervations, on the other hand, from VTA.  The DA-ergic 

connections are not implemented as weights, but, rather, the DA Signal level modulates 

learning in target synapses and/or the thresholds † of output sigmoidal functions. 
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2.3.8 Action Gating Module 

 

The óactorô pathway is gated by a complex basal ganglia dynamic gating 

mechanism, depicted in Figure 2.9.  This, as well as the Babble Gating mechanism 

described in Section 2.3.9, was designed to implement the braking release mechanism 

described in Section 1.2.2.2 (see also Figure 1.4), though the specific units and their 

connectivity are not exactly analogous to the actual BG circuitry.  Though action 

selection is an often-proposed and plausible role of the BG circuitry (Gurney et al., 2001; 

Redgrave et al., 1999a), in this model, the BG has more of a role of output gating (Brown 

et al., 2004).  Brown and colleagues (2004) in their model suggest a layer specificity in 

frontal neocortex, where activity in layers II, III, and Va represents, in essence, requests 

(potentially conflicting) for particular behavior choices; and layer Vb activity represents 

the actual behavioral output gated.  The more superficial layers (II, III, Va) project to the 

BG, and the BG outputs, in an inhibitory fashion, to the thalamus which projects in 

excitatory connection to the deep output layer (Vb).  (Layer VI provides a top-down 

enabling signal to both input and output layers in the (Brown et al., 2004) model, but this 

layer is ignored in this dissertation.)  In the dissertation model, the Request units take on 

the role of the input layer units, and the Init units are analogous to the Layer Vb cells.  

The Request and Init units are essentially considered to be colocated within the same 

cortical columns.  When Nod or Shake (or both) are requested by Plan unit excitation of 

the Request units, the Action Gating mechanism decides what behavior (if any) should be 

allowed to be initiated, and sets the appropriate Nod or Shake Init unit appropriately.  If 

these units are excited over threshold, they trigger Exec activity which cannot be 

interrupted until the behavior is completed.  What behaviors are permitted or rejected by 
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the gating mechanism can be learned by the Go and NoGo units, respectively.  The Go 

units learn to ñopen the gate wideò, in response to particular working memory contexts, 

when gating of the behavior during those contexts leads to reward.  On the other hand, 

the NoGo units learn to ñshut the gateò, in response to particular working memory 

contexts, when gating of the behavior during those contexts leads to punishment.   

A (somewhat archaic and whimsical) military metaphor might be used to explain 

the performance of the Action Gating mechanism.  Imagine a fortified city with two 

gates, manned by sentries and commanded by a governor who rewards the sentriesô 

performance by providing them with wine.  It is important to the governor that certain 

dignitaries be allowed into the city through specific gates (which correspond to specific 

behaviors in the model), and that certain undesirables are shut out.  The observable 

characteristics of the people permitted or denied entrance correspond to working memory 

contexts in the model (in our task, the context of the last-heard tone and the currently 

present colored square).  If a desired dignitary is allowed into the city through the correct 

gate (corresponding to an appropriate behavior, given the current situation), then the city 

benefits, and the governor is happy and rewards the sentries temporarily with more wine 

(a dopamine burst).  If a spy or other enemy is allowed into the city and is able to work 

mischief (corresponding to a wrongly-timed behavior in the model), or if the right 

dignitary is ushered in through the wrong gate (corresponding to the wrong behavior 

being executed at the right time), then the governor is unhappy and punishes the sentries 

by temporarily withholding wine from them (a dopamine dip).  The level of the 

governorôs overall happiness with the sentriesô performance can be directly measured by 

the amount of wine heôs providing them.   
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Now, there are three types of sentries in the city, greeters and gate openers (the 

Go cells), gate shutters (the NoGo cells), and a single captain of the guard (the Conflict 

unit).  The captain of the guard is unable to actually observe and inspect the people that 

desire entrance to the city, but is aware of the operation of all of the gates, and if the 

greeter sentries are in the process of opening more than one of the gates at the same time 

(which is a cause for suspicion in this city), he vetoes their activities.  The genial gate 

openers generally allow more people to enter the city when they have more wine, but are 

less likely to let people in when they have less.  The unfriendly gate shutters, on the other 

hand have a predisposition to shut everybody out, but when provided with enough wine, 

desist.  In the sentriesô hierarchy, the gate shutters are able to overrule the gate openers.  

Each gate opener or shutter has a limited memory allowing them to recognize only one 

kind of person (one working memory context), and among the openers or shutters, only 

one sentry in each is allowed to operate at a time at each gate, the sentry that best 

recognizes the person to be permitted or denied access.  So each sentry specializes in the 

recognition of a particular class of person, and when they encounter this class, they will 

let them in or shut them out. 

Ordinarily, when wine is at an intermediate level, the gate openers will let in those 

requesting access by default, though after a significant waiting period.  The gate shutters, 

by contrast, will idle their time away.  If an important dignitary arrives, one of the gate 

openers, recognizing them, will excitedly open the gate for them with less delay than 

usual.  If one of the gate shutters, however, recognizes a particular person as a spy, 

however, they will insure that the gate is shut.  When things are going well and there is 

more wine flowing, the gate openers are more likely to let people in and the shutters less 
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likely to shut people out, whereas the reverse is true if times are bad and there is less 

wine.  Each sentry responds in a simple-minded way, generally, reacting to the particular 

kind of person they see, and not changing their responses.  However, when the governor 

gives the sentries a wine reward, the gate opener who was responsible for letting in the 

dignitary learns that dignitaryôs identity and will let them in without delay in the future.  

On the other hand, a shutter who is not inclined to let in the person in will learn to ignore 

them in the future.  When the governor withholds wine, however, the opposite is true: the 

opener will learn to ignore the person in the future, and the shutter will learn to quickly 

shut them out in the future.  The result is that the city garrison is capable of learning 

whom to admit and whom to turn away based on the consequences for the city (in the 

model, whether the organism is rewarded or punished for executing a particular behavior 

in a particular context). 

Moving from the metaphor to the model, the Request unit activity for both Nod 

and Shake drives the respective Go E (excitatory) units and also the Conflict unit which 

is only engaged if both behaviors are requested.  The Conflict unit likely corresponds to 

feedforward inhibitory interneuronsðnot medium spiny neuronsð in the striatum which 

inhibit the Go E cells when they are sufficiently excited by cortical afferents (Brown et 

al., 2004).  The Go E cells are excited by color and tone working memory units, and also 

by the neural noise mechanism explained in Section 2.3.10, as well as by the Request 

units.  DA Signal activity modulates both learning of the WM to Go E unit weights, and 

the output thresholds † of the Go E units.  The operation of the learning mechanism will 

be detailed in Section 2.3.13.  The output threshold effects are shown in Figure 2.10: as 

DA level increases, the thresholds of the Go E units decrease, making Go E unit 
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activation easier, and as will be seen in Chapter 3, more prompt.  The 4x4 Go E units 

compete through the kWTA mechanism for a single winner.  The gating noise provides a 

random bias on which unit is the winner during the occurrence of a visual stimulus.  

Request activity in conjunction with this random bias activity is generally enough to 

trigger Go E unit activity, but a sufficient decrease of DA can inhibit Go E activation 

altogether.  The Go E units in their activity all excite a single inhibitory Go I unit; this 

arrangement corresponds to a proposed efferent connection between direct-pathway 

striatum neurons and GPe inhibitory indirect pathway neurons (Frank, 2006).  The direct 

pathway would actually be a double-inhibitory (i.e. disinhibitory) connection (see Figure 

1.4), but it is abstracted in this dissertation as a double-excitatory connection from the 

Request unit to the Go E units to the Init unit which represents an amalgamation of the 

GPi/SNr, thalamus, and the neocortical thalamic target.  Each Init unit is excited by its 

corresponding Request unit, and the Go E units, and inhibited by the corresponding 

NoGo and Go I units.  The Init unitôs activity depends on, simultaneously, the Request 

and Go E unit activity.  The feedforward excitation/inhibition of the Go-to-Init pathways 

essentially causes Request activity to phasically excite the Init unit, but disables new Init 

activity until the behavior request is released so that the Go I units are deactivated.   

The 4x4 NoGo units also compete for a single winner through kWTA.  They may 

be excited by learned working memory conditions, or by a conjunction of random gating 

noise-determined bias and the occurrence of Init unit activity.  Thus, for example, any 

time a Nod is triggered, one of the 4x4 Nod NoGo units is activated by the Nod Init 

activity, so that DA phasic activity is able to train the response of the NoGo pathway.  

Both the random noise and the signal from the Init units probably come from a 
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thalamostriatal pathway (Brown et al., 2004; Mengual, de las Heras, Erro, Lanciego, & 

Giménez-Amaya, 1999).  As shown in Figure 2.10, the NoGo units have their output 

thresholds affected in the opposite fashion from the Go units: increasing DA increases the 

thresholds, making it harder to activate NoGo units when the DA level is high.   

2.3.9 Babble Gating Module 

 

 The gating mechanism for the óbabbleô pathway, as shown in Figure 2.11, is 

simpler than that of the óactorô pathway, but similarly-organized.  Whereas the former 

pathway is dorsal striatal, the latter is most likely ventral striatal.  A Babble Request unit, 

probably in ACC, excites the 4x4 set of Babble Go E units which compete through 

kWTA for a single winner.  This unit excites an inhibitory Go I unit, and the Request, Go 

E, and Go I units in their dynamics lead to a phasic activation of the Babble Init unit by 

Babble Request activation, and then the requirement of disengaging Request unit activity 

before a new babble can be requested.  If the Babble Init unit is driven over threshold 

(0.5), the Babble Exec unit turns on for a period of 2.5 s (25 iterations), and, while itôs on, 

inhibits the Babble Request unit directly.  A refractory period of 5 s (50 iterations) is then 

required before a Babble Init signal can trigger a new 2.5 s Babble Exec.  While the 

Babble Exec unit is active, it, in addition to babble noise (see Section 2.3.10), drives a 

single random Babble unit to activation. 

 The Babble NoGo pathways works in the same fashion as the Nod and Shake 

NoGo pathways work.  Learned working memory contexts may suppress Babble Init 

activity by triggering NoGo activity, but Babble Init activity also triggers Babble NoGo 

activityðrandomly in one of the 4x4 unitsðso that the NoGo pathway may be subject to 

learning through DA Signal bursts or dips. 



99 

 

Figure 2.10ôs depiction of the threshold modification by DA applies to the Babble 

Gating, as well as the Action Gating, mechanism: DA makes Babble Go cells more 

responsive and the NoGo cells less responsive.  The DA Signal is, of course, also 

involved in training the Babble Request to Go E and NoGo pathways, with phasic bursts 

training the former, and dips the latter. 

2.3.10 Neural Noise Generation Mechanism 

 

 The Action and Babble Gating mechanisms and the random behavior generation 

allowed by the óbabbleô pathway require a source of randomness, or perhaps, rather, 

pseudo-randomness.  Where that noise source or sources might be located is unclear.  

However, it is proposed here that the thalamus might be a source, as it receives a wide 

variety of input related to both external and internal stimuli, and the sheer variability of 

occurring thalamic states, as a result, might provide a viable source of pseudo-random 

activation.  An illustrative analogy for the algorithm used by the model is that there are 

layers of ὲ neural units where 1 out of all ὲ of the units is driven to activation by noise 

input, implementing, in essence, an ὲ-sided die.  Sparse random feedforward connections 

from these ñdiceò layers to their targets allows randomization of neural activity in these 

targets. 

 Figure 2.12 shows the actual implementation of the neural noise source.  This 

may or may not be neurally plausible, but the important result is that there are two sets, 

8x8, of units that, upon the appearance of a visual stimulus (a colored square), activate 

randomly one unit each: the Gated Dice layer and the Babble layer.  The Gated Dice 

activation drives the Action and Babble Gating mechanism noise, projecting to the Go 

and NoGo units.  The Babble units are the source of random Plan and Request activity 
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during initiation of babble behaviors.  A single 8x8 Neural Noise layer generates 

considerably varying random output activity in all of its units.  Activation from this 

projects in a one-to-one fashion to 8x8 Neural Dice and Babble Dice layers which both 

have kWTA dynamics set up for a single winner.  However, the dynamics of these units 

is specially modified.  Each 8x8 Dice layer has self-excitatory connections for each unit, 

and a reciprocal connection to a kind of óshadowô 8x8 inhibitory layer (not shown in 

Figure 2.12).  The gain ‍ of the output units is set extremely low by default, so the 

kWTA mechanism doesnôt yield any clear winners, and the Neural and Babble Dice units 

basically mirror the activity of the Neural Noise layer.  However, when the Dice Set unit 

is activated, the gain on the Neural and Babble Dice units significantly increases for the 

duration of Dice Setôs activation, so that a kind of working memory dynamic is 

implemented in the Dice layers, similar to the working memory dynamics the author has 

used in a previous work (Chadderdon & Sporns, 2006).  Essentially, this working 

memory dynamic, in combination with the kWTA algorithm, freezes the most active unit 

of the Dice layers into activity until the Dice Set unit is inactivated and the gain returns to 

its original low level.  The Neural and Babble Dice units project, respectively, to the 

Gated Dice and Babble layers, and do so also in one-to-one projections.  These output 

layers, essentially, take a logical AND of activity from their afferent Dice layers, and the 

activity of a Dice Gate unit.  Thus, the Dice Gate unitôs activity signals the Gated Dice 

and Babble units being set to the values of the Neural Dice and Babble Dice layers, 

respectively.  The presence of a stimulus (perhaps detected by thalamic lateral geniculate 

nucleus) activates both the Dice Set and Dice Gate units simultaneously.  As a result, the 
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output layers generate no random activity in the absence of a colored square, but each 

(usually) has a single random unit activated when a visual stimulus appears. 

 Movie 2.3 shows the noise generation mechanism operating during the simulation 

run shown in Figure 2.2.  Labels for the plots are: (1,1) Neural Noise Units; (1,2) Neural 

Dice Units; (1,3) Gated Dice Units; (2,2) Neural Dice Set; (2,3) Neural Dice Gate. 

2.3.11 Model Implementation of Learned Responses 

 

Figures 2.13 through 2.15 illustrate the dynamics of the modelôs performance in 

making learned responses.  Figure 2.13 shows an overview of how Nod responses are 

generated by the model during the same simulation run as that depicted in Figure 2.2 (and 

Movie 2.1): the test run that occurs after the model has been trained successfully on the 

full task set.  The activity of color and tone working memory can be seen (second and 

fourth traces).  It can be seen, also, that around 3 Plan units are activated during a visual 

stimulus.  For C AND Blue or Eb AND Red, the Nod Request units are activated: 

generally only one unit winning because of the kWTA mechanism.  Nod Request activity 

triggers Nod Go E activity which, in turn, triggers Nod Go I activity which is inhibitory 

in nature.  The Nod Init unit is activated and, in all but one case, goes over the Nod Exec 

threshold shown in green, which triggers a Nod behavior.  Figure 2.14 shows, for the 

same simulation run, how the afferents to the Nod Init unit contribute to its activation.  

The Request and Go E unit activity (shown in black) is excitatory, whereas the Go I and 

NoGo unitsô activity (shown in red) is inhibitory.  The activation from these sums to form 

the NodInitSum trace.  This last trace is the net input to the Nod Init unit; the actual 

output of the Nod Init unit follows in the next trace.  Interestingly, it can be seen that one 

of the desired Nodsðthe last oneðfails to execute a Nod behavior because the Nod Init 
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unit doesnôt quite clear the Nod Exec threshold (shown in green in the Nod Init trace).  

The Shake behavior works in the same fashion as Nod, so figures are omitted for it. 

Figure 2.15 shows the crucial spatial structure of learned Plan and Request unit 

activity.  Figure 2.15(a) shows, in one simulation iteration (iteration 45 of the run shown 

in Figures 2.2, etc.), how the occurrence of a blue square in the context of a C tone affects 

the Plan and Request layer activity.  In the first column of plots, the Visual Presence unit, 

and the color and tone current stimuli and working memory traces are shown, along with 

Babble unit activity.  Plot (1,2) (first row, second column) shows the weights in fanout 

from the single Visual Presence unit to the 8x8 Plan layer.  Plots (2,2) and (2,3), 

respectively, show the fanout weights from the Blue WM and Red WM units to the Plan 

layer.  Plots (3,2) and (3,3), respectively, show the fanout weights from the C and Eb tone 

WM units to the Plan layer.  Essentially for this example, the logical AND of Plots (1,2), 

(2,2), and (3,2) gives the pattern seen in Plot (4,2), the actual Plan unit activation in the 

condition of Visual Presence AND Blue AND C.  Plot (1,3) shows the net input 

activation of the Plan layer input arbors to each of the Nod Request units; Plot (4,3) 

shows the same for the Shake Request units.  Plot (1,4) shows the net input activation for 

the Babble layer input arbors to each of the Nod Request units; Plot (4,4) shows the same 

for the Shake Request units.   Plots (2,4) and (3,4) show the Nod and Shake Request unit 

outputs, respectively.  It can be seen that unit (4,2) of the Nod Request layer wins the 

competition.  Figure 2.15(b) shows how the occurrence of a red square in the context of 

an Eb tone affects the Plan and Request layer activity.  It can be seen that a different set 

of Plan units becomes active, and unit (4,4) of the Shake Request layer wins the behavior 

request competition.  Ideally, each color/tone conjunction is represented by non-
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overlapping sets of Plan and Request units.  3-5 units in a Plan representation are 

sufficient to sustain the correct output that selects the correct Request unit, and to provide 

some robustness in the representations.  As will be explained in more detail in Chapter 3, 

however, accidental overlap in learning causes behavior unlearning and is, therefore, a 

source of capacity limitation in the model. 

2.3.12 Model Implementation of Babble Responses 

 

Figure 2.16 shows the first half (500 iterations) of run 4 of the training phase for 

the full task set.  (Movie 2.4 also shows this run.)  During this run, the model has learned 

the C AND Blue -> Nod and C AND Red -> Shake conjunctions, but it must now learn 

the Eb AND Red -> Nod conjunction.  The first three times the model is presented with a 

red square, it does not react, so it is neither rewarded nor punished.  The level of the 

Frustration unit activation, however, rises as the model goes unrewarded.  Although the 

model also responds with Novelty unit activation during the Eb tone deliveries, it is 

primarily the Frustration unit that drives the Babble Request unit.  Once the Request unit 

is driven to a high enough level, the Babble Go units are finally activated enough to cause 

the Babble Init unit to activate over the Babble Exec threshold (shown in green in the 

Babble Init unit trace).  The first babble (shown in Figure 2.17(a)) is a Shake which is a 

wrong guess, for which the model is punished.  A second babble fails to trigger either a 

Nod or a Shake, but the third and last babble (shown in Figure 2.17(b)) triggers the 

correct Nod behavior, and for the rest of the simulation run, the Babble Request unit is 

never pushed high again because the model responds correctly to the stimulus and the 

resulting rewards reset the Frustration activity.  So the model ceases babbling once it has 

learned the conjunction. 
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Figure 2.17 shows more closely the first and third babble from the simulation run.  

It can be seen that a single random Babble unit is activated during each babble.  A 

random distribution of 3-6 Plan units is activated as a result of this, and a different 

behavior is randomly selected (through the Request units).   

2.3.13 Model Implementation of Learning  

 

Thus far, the performance of the model in the absence of (or before) learning has 

been discussed.  The afferent weights to the Plan, Request, Go, and NoGo units, however, 

are subject to learning and unlearning depending on the operation of the DA mechanism.  

Two prominent features of the modelôs learning algorithm are that learning is value-

driven, and eligibility traces are used for selecting which synapses are eligible for weight 

modification.  Section 1.2.3.7 discusses value-driven learning and DAôs involvement.  

Figure 2.18 shows graphically the relationship between DA level and LTP (weight 

increase) and LTD (weight decrease).  When the DA level is in the intermediate range, no 

synapses are modified.  On the other hand, when the DA level is in the upper or lower 

regions, eligible synapses are subject LTP or LTD.  The units dominated by D1ðthe 

Plan, Request, and Go unitsðhave LTP triggered when the DA level is driven over 0.75 

and LTD triggered when the DA level is driven below 0.20.  The D2-dominated units, the 

NoGo units, have LTD in their upper range and LTP in the lower range (for reasons 

explained in Section 1.2.3.7).  Generally, the DA level falls in the intermediate range 

where no weights change, but phasic (reward or novelty) bursts drive the level into the 

upper range, and phasic (punisher) dips drive the level into the lower range.  The weights 

are all positive values (never changing signs), generally no greater than 1.0.  

Additionally, each learning layer of the model has a maximum weight value that caps the 
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value for each synaptic weight.  There is also heterosynaptic competitive weight 

renormalization (Abbott & Nelson, 2000) for most of the DA-innervated areas which is 

implemented by a total (afferent) weight maximum.  If, after synaptic modification, the 

total weight runs over this cap, all weights are rescaled to bring the total afferent arbor 

weight to this maximum. 

Eligibility traces are used in a number of models to solve what would otherwise 

be a difficult credit assignment problem (Barto, Sutton, & Anderson, 1983; Brown et al., 

1999; Sutton & Barto, 1990).  The difficulty is that Hebbian events (co-occurring pre- 

and post-synaptic activity at a synapse) are transient affairs, and by the time a reward or a 

punisher is delivered for the behavior they were responsible for, the co-occurrence of 

activity is no-longer present.  However, if a synaptic memory existed that remembered 

the Hebbian event over a period of a few seconds, then by the time the reward or punisher 

is delivered, the eligibility trace, the synaptic memory, would still be active, and the 

synapses could then be rewarded or punished accordingly.  Ca
2+

 channel and voltage-

gated activity at specific synapses might allow the necessary synaptic memory (Magee & 

Johnston, 1995; Takechi, Eilers, & Konnerth, 1998) when the pre- and post-synaptic 

activity, together, generate enough calcium influx.  In the model, a coincidence of pre- 

and post-synaptic output activity over a threshold (0.7) causes an eligibility trace to be 

initiated for a period of 3.8 s (38 iterations).  During the eligibility trace activation, the 

synapse is subject to the DA effects shown in Figure 2.18. 

Figure 2.19 shows an example of high DA initiating LTP in a single synapse (a), 

and an example of low DA initiating LTD in another (b).  It can be seen in trace 3 of both 

examples (both of them color working memory-to-Plan synapses) that the eligibility trace 
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remains on 3.8 s after the co-occurrence of pre- and post-synaptic activity ceases.  In the 

fourth trace, the DA activity is shown with the LTP and LTD thresholds superimposed on 

them.  It can be seen in the final traces that, in the first example the weight increases at 

the time when the DA level moves over the LTP threshold, and in the second the weight 

decreases when the DA level drops below the LTD threshold.  (The blue lines shown in 

the Weight trace are the maximum weight values for the synapse.) 

 The collective behavior of the learning can best be understood by examining how 

the model forms distributed representations for the conjunctions it learns.  Figures 2.20 

and 2.21 show an example of the modelôs initial learning, during the training phase, of 

the C AND Red -> Shake conjunction.  (Movie 2.5 shows the run, and Movie 2.6 shows 

the superset of the iterations that Figure 2.21 was drawn from.)  In the first behavior (and 

babble), the model guesses the correct behavior output, and the second and future 

responses (though the latter arenôt shown) are correct learned responses.  During the 

babble in iteration 42 (see Figure 2.21(a)), it can be seen that a pattern of (primarily) 5 

units is activated in the Plan layer.  Plot (3,4) shows that unit (4,4) of the Shake Request 

layer is activated.  The Plan and Request unit activity is stimulated by the Babble unit 

activity shown in Plot (4,1).  It should be noted that there are existing fanout weights 

during the babble; these are the Plan unit afferent weights for the previously trained 

conjunction, C AND Blue.  During iteration 100, after the reward has been delivered (see 

Figure 2.21(b)), the pattern previously seen in the Plan units appears in the fanout 

weights atop the existing pattern for the previous conjunction.  The pattern is in the 

Visual Presence, Red WM, and C WM fanout weights which means that the next 
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occurrence of Visual Presence AND Red WM AND C WM will cause the corresponding 

Plan units to reactivate: the same as were active in Figure 2.21(a). 

 The learning dynamics of the Plan layer is typical in the model.  Each Plan unit is 

innervated with Visual Presence, Color WM, and Tone WM activity.  When the model is 

rewarded for a correct behavior in these simulations and a Plan unit is active, the Visual 

Presence unit is usually still active, and the color WM unit for the viewed color and the 

tone WM unit for the tone context are always active.  Because of the individual weight 

maximum, the afferent arbor maximum, and a high (fast) learning rate, the units are able 

to learn in one reward presentation a conjunction of active afferents that can potentially 

learn ñdonôt careò conditions.  For the Plan units, the maximum individual weight, the 

arbor maximum, and the learning rate (the increment of the weight during LTP and 

decrement during LTD) are all set to 0.55, and it is the case that an afferent output 

driving a single weight of 0.55 is enough drive the unit over the sigmoidal threshold.   So, 

if only, for example, a Blue WM unit were turned on, and there was no tone working 

memory or Visual Presence unit activity, then the weight from the Blue WM to the Plan 

unit would adjust to 0.55 on reward, and thereafter the unit would be activated whenever 

the blue working memory was engaged, but the tone and Visual Presence activity would 

be treated as ñdonôt careò conditions.  However, if, as is typical, the Visual Presence unit 

is on, and one of the color, and one of the tone working memory units, then all of the 

three afferent units try to add 0.55 to their weights to the Plan unit during the reward-

triggered LTP.  However, this leads to an arbor sum of 1.65 which is over the 0.55 

maximum arbor threshold.  Therefore, the renormalization algorithm operates so that all 

of the 0.55 weights are scaled down so that their sum is 0.55, i.e., each of the 3 weights is 
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scaled down to 0.183.   The result is that all three afferent units need to be active in the 

future in order to drive the Plan unit over threshold; there are no ñdonôt caresò.  Generally 

speaking, the total afferent activity needs to be over 0.5 for the unit to be activated.  A 

single afferent unitôs activation only provides 0.183 and any pair of active units only 

provides 0.367 in afferent net input, and these are not enough to activate the Plan unit.  

The renormalization algorithm essentially forces a logical AND to be established for all 

of the previously active afferent units. 

 The Nod and Shake units operate according to a similar dynamic to the Plan units.  

However, they only receive 2 inputs: Color WM, and Tone WM input.  Thus, they form 

conjunctions that can have at most 1 ñdonôt careò condition.  Movie 2.7 shows the 

learning the Shake Go weights during the time frame of the Figure 2.20 simulation. 

 The Request units learn under a somewhat different dynamic.  The maximum 

arbor weight is set much higher, 1.0.  The learning rates, however, and the individual 

maximum weights are set much lower, 0.2.  Thus, at least 3 Plan units connected to 

learned weights have to be activated in order to make the Request unit activate over 

threshold.  Generally, somewhere between 3 and 5 units are activated during a babble, so 

the Plan unit representation for a conjunction requires only 3 out of potentially 5 units to 

be active, and it doesnôt matter which 3 units.  This provides some robustness in the 

model to degradations that come from losses incurred during learning of new 

conjunctions or failed babbles which trigger unlearning in previously well-allocated Plan 

units. 

 One of the features of the model is its capability of reversal learning.  Figures 

2.22 through 2.24 show an example of how a conjunction can be unlearned and relearned.  
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Specifically, what is shown is from the first simulation run of the reversal phase.   The 

desired conjunction is C AND Blue -> Shake.  However, what has been previously 

learned in the training phase is C AND Blue -> Nod.  During the first presentation, the 

model tries the behavior it learned previously and is punished for it.  Thereafter it ceases 

to make that response, but finally, during the sixth presentation of the blue square, the 

model babbles and ends up choosing the correct response which it then learns.  Figure 

2.22 (and Movie 2.8) shows the overall dynamics.  Figure 2.23 (and Movie 2.9) shows 

how the weights are changed during the initial punishment unlearning.  The pattern seen 

in the Plan activation in 2.23(a) is effectively subtracted from the weights of the Visual 

Presence, Blue WM, and C WM fanouts to the Plan units in Figure 2.23(b), so that the 

occurrence of the stimulus conjunction will no longer trigger those Plan units in the 

future.  Then in Figure 2.24(a), it can be seen that the correct babble activity seen in the 

Plan units gets added to the Visual Presence, Blue WM, and C WM fanout weights in 

Figure 2.24(b) so that the those Plan units will be activated in the future.  In addition, 

though it is not shown, these Plan units will have learned weights to Shake Request unit 

(4,3) so that the new response is a Shake rather than a Nod.  Other learning, not shown, 

transpires in the Go units that allows the appropriate action gating. 

2.3.14 Dopamine Effects Manipulation 

 

So far, the performance of the model under normal DA conditions has been 

explained.  However, this dissertation is also interested in the effects of modifying the 

dopaminergic activity of the model, specifically producing path-selective conditions of 

hypo- or hyper-DA concentration, and testing both learning and performance under these 

conditions.  Thus far, learning has been understood as being directly controlled by the 
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DA Signal unitôs activity.  In fact, there are six intermediate DA effects variables that are 

maintained for the DA targets, and these variables are the true input values for the DA 

learning threshold function shown in Figure 2.18: 

¶ Plan unit DA effect 

¶ Request unit DA effect 

¶ Nod/Shake Go unit DA effect 

¶ Nod/Shake NoGo unit DA effect 

¶ Babble Go unit DA effect 

¶ Babble NoGo unit DA effect. 

Agonism and antagonism, respectively, for these DA effect variables, are implemented 

by adding or subtracting numbers between 0 and 1 to the DA Signal unit activation.  The 

resulting DA effect values are then clipped between 0 and 1.  Effectively, the 

agonist/antagonist effects shift the range of the DA signal at which LTP or LTD occurs in 

the target units (for the Plan, Request, Go and NoGo units), and shift the activation 

threshold † for the target units (Go and NoGo only; see Figure 2.10). 

The DA manipulation results (covered in Section 3.2) utilize a different task set 

for training and testing the model in order to simplify and expedite the training process 

and conserve data storage space, so that statistics can be collected on the results.  Instead 

of the full, 4-conjunction task set, only one conjunction is learned by the model: C AND 

Blue -> Nod in the training and maintenance phases, and C AND Blue -> Shake in the 

reversal phase.  10 different dosages of agonism and antagonism are simulated under 4 

different pathway conditions.  The dosages are notated as follows: 
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¶ x3: hypo-DA 0.3 (subtract 0.3 from DA Signal) 

¶ x2: hypo-DA 0.2 (subtract 0.2) 

¶ x15: hypo-DA 0.15 (subtract 0.15) 

¶ x1: hypo-DA 0.1 (subtract 0.1) 

¶ x05: hypo-DA 0.05 (subtract 0.05) 

¶ norm: normal DA (use the default DA Signal) 

¶ X05: hyper-DA 0.05 (add 0.05 to DA Signal) 

¶ X1: hyper-DA 0.1 (add 0.1) 

¶ X3: hyper-DA 0.3 (add 0.3) 

¶ X5: hyper-DA 0.5 (add 0.5). 

The pathway conditions are as follows: 

¶ ns/NS: (hypo-/hyper-DA) Nod/Shake (dorsal striatal) pathway (modify 

Nod/Shake Go and NoGo units) 

¶ b/B: Babble (ventral striatal) pathway (modify Babble Go and NoGo units) 

¶ pr/PR: Plan/Request (neocortical) pathway (modify Plan and Request units) 

¶ g/G: global hypo-/hyper-DA modification (modify all pathways the same way). 

So, there are 37 total DA manipulations: 36 hypo- and hyper-DA conditions, e.g., ns15 

would mean hypo-DA in the Nod/Shake pathway with 0.15 as the subtraction performed; 

and 1 norm condition where DA is unmodified.  For each DA manipulation, multiple 

model instances have data collected for them so that means and standard deviations can 

be calculated for that data. 

 Figures 2.25 through 2.28 show examples of how different DA manipulations 

affect the target area DA effects.  Figure 2.25 shows the normal (non-manipulated) DA 



112 

 

effect: the DA effects at all of the targets track exactly the DA Signal unit.  Figure 2.26 

shows the DA effects for the ns2 (Nod/Shake hypo-DA 0.2) condition: the Nod and 

Shake Go and NoGo units selectively have their DA effects suppressed by 0.2.  Figure 

2.27 shows the DA effects for the PR5 (Plan/Request hyper-DA 0.5) condition: the Plan 

and Request units selectively have their DA effects boosted by 0.5.  Finally, Figure 2.28 

shows the DA effects for the g2 (global hypo-DA 0.2) condition: all DA targets have 

their DA effects suppressed by 0.2. 

  



113 

 

Chapter 3: Results 

 

Two sets of results were collected for the model.  Section 3.1 discusses data 

collected under the full task set regime explained in Section 2.2.  Essentially, a single 

simulation ósubjectô is studied which is a particular instance of the model, meaning that 

the initial weights are randomly set only once and that instance is used for all of the 

simulation runs.  The model was first trained in the initial training simulation phase.  This 

training-phase model was then tested through the maintenance and reversal simulation 

phases to determine how well the model could maintain or reverse its learning, 

respectively. 

The results described in Section 3.2 involve testing the effects of selective hypo- 

and hyper-DA level manipulation (see Section 2.3.14) on performance in the training, 

maintenance, and reversal simulation phases.  Multiple ósubjectsô, i.e., different 

randomized model instances, were tested under the DA manipulation conditions under 

the three simulation phases with, again, the training simulation phase being followed, in a 

bifurcating fashion, by simulation/training in the maintenance and reversal phases.  

Means and standard deviations were collected for performance measures and measures of 

aggregate model activity. 

3.1 Full Task Set Results 

3.1.1 Training Phase 

 

 Figure 3.1 and Table 3.1 show the performance of the model over the entirety of 

the training phase.  Figure 2.2 and Movie 2.1 show the performance over the last 13 trials 

which are of the special testing type (see Section 2.2). 
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3.1.1.1 Full Task Set Successfully Learned 

 

 A quick appraisal of Figures 3.1 and 2.2 shows that the model successfully learns 

the full task set.  In the final 13 trial testing run, 11 trials (84.6%) are correct responses, 

and the remaining 2 (15.4%) are misses, i.e., failures to respond.  After around 190 or so 

trials (13 simulation runs / 13,000 iterations / 1,300 s. ñreal-timeò), all 4 conjunctions are 

successfully learned. 

 Figure 3.2 shows how the model accommodates the 4 conjunctions.  Each of the 4 

conjunctions has essentially non-overlapping representations in the Plan, Request, and Go 

units.  During the initial babble, random Plan and Request units are excited by the Babble 

units, and the Request activity, in conjunction with random gating noise activity, 

generates random Go unit activity.  The kWTA lateral inhibitory mechanism causes this 

activity to be focused on a few units, making the representations sparse.  If the babble 

leads to no behavior being generated, as sometimes happens, then there is no learning.  If 

the babble leads to a correct behavior guess, then the active random representations get 

ñstamped inò by the reward.  On the other hand, if the babble leads to a wrong behavior, 

then the random representations get ñstamped outò by the punisher.  A learned correct 

behavior, i.e., a correct response in the absence of a babble, then, leads to reinforcement 

of its driving representations when it receives a reward. 

3.1.1.2 Conjunctions Can Be Overwritten During Training 

 

 However, the punishment of incorrect babbles, as well as the learning of new 

conjunctions, can lead to unlearning of previously learned conjunctions.  An example of 

this is shown in Figures 3.3 and 3.4 and Movie 3.1.  In run 2 of the training simulation 

phase, the model is tasked to learn C AND Red -> Shake, but in the process of doing so, 
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the conjunction learned in run 1, C AND Blue -> Nod, is unlearned.  Figure 3.3 shows 

that between iterations 410 and 470 there is an incorrect (i.e., Nod instead of Shake) 

babble, for which the model is punished.   

As it turns out, this punishment leads to unlearning.  Figure 3.4 shows how.  Early 

in the babble (at iteration 428) (see Figure 3.4(a)), 2 Plan units are triggered which 

participate in the C AND Blue -> Nod conjunction.  The corresponding weights are made 

eligible for reward or punishment after this iteration.  Not shown, but viewable in Movie 

3.1, is the fact that as the babble progresses, a different set of Plan units is activated by 

the active Babble unit.  Afferent weights to these Plan units are made eligible, also, but 

the weights made eligible in iteration 428 are the critical ones that lead to trouble.  As 

Figure 3.4(b) shows, after punishment, these weights are decremented, and it can be seen 

that only a conjunction of 2 Plan units could be activated by the Visual Presence AND 

Blue WM AND C WM conjunction.  As mentioned in Section 2.3.13, at least 3 units 

need to be active to trigger Request unit activity, so the previous conjunction has been 

effectively disrupted.  Had the babble resulted in the correct response (Shake), however, 

the C AND Blue -> Nod conjunction would still have been unlearned because the 2 Plan 

units shown in Figure 3.4(a) would have been co-opted by the new conjunction. 

Thus, the model is subject to capacity limitations due to the relatively large 

number of Plan units (3 to 5) required out of 64 units (8x8) for each conjunction.  At 

most 21 (64 / 3 rounded) conjunctions could be represented in the Plan layer, and this 

would only be possible if the random unit selection miraculously caused no collisions of 

new unit representations with the old ones.  In an actual brain, it is likely that there would 

be a much larger number of units so that the activation by stimulus conjunctions would 
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be much sparser and far more conjunctions could be learned.  Nonetheless, it is likely that 

analogous interference effects might be found in prefrontal cortical learning. 

3.1.1.3 Novelty Sometimes Drives Learning 

 

 It is not always the case that learning is triggered by reward delivery.  Figure 3.5 

shows a curious instance where the model tries a babble (around iteration 100) and fails 

to generate a behavior, but nonetheless eventually makes the correct response without 

generating another babble (around iteration 225).  Movie 2.1 shows the entire simulation 

run this is taken from.  It is, in fact, the first simulation run of the training simulation 

phase, when the model is tasked to learn C AND Blue -> Nod.   

How does the model learn without being rewarded?  Figures 3.6 (and Movie 3.2) 

and 3.7 show how this is possible.  Figure 3.6(a) shows the babble-induced Plan unit 

activity, and that the Plan weights are initially zero.  Figure 3.6(b) shows that the weights 

corresponding to most of the Plan units active in (a) are learned by iteration 150.  Figure 

3.7 shows the learning of one of these weights: the weight from the Blue WM unit to Plan 

unit (6,1).  Returning to Figure 3.5, it can be seen that a novelty burst was delivered just 

before iteration 150.  This was triggered by the third occurrence of the blue square (which 

happens to be the last occurrence which triggers novelty).  It is not clear why the Nod Go 

unit is not initially activated, but it is clear from the fifth and sixth plots in Figure 3.5 that 

the Plan and Request units of the model have learned the conjunction due to the novelty-

induced DA burst.  Later, the Nod Go unit finally responds to Nod Request activity, 

probably due to the decreasing Go threshold as Frustration unit activity drives the DA 

level up.  This causes the Nod behavior to finally be performed, so that the Nod Go units, 
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as well as the Plan and Request units, are reinforced.  Thus, the behavior is finally 

learned. 

3.1.2 Maintenance Phase: Task Set Learning Maintained 

 

 Figure 3.8 and Table 3.2 show the performance of the model over the entirety of 

the maintenance phase.  Mostly, the model succeeds in maintaining its learning.  Of the 

73 trials, 54 (74.0%) are correct responses (or repeats in 2 cases), and the remaining 19 

(26.0%) are missed responses.  For each of the trials, the reaction time (RT) is measured 

from the appearance of the square to the onset of the response (Nod or Shake).  The 

average RT over all 73 trials turns out to be 1.12 s (11.2 simulation iterations).  This is 

the typical performance of the model under normal DA concentration conditions. 

3.1.3 Reversal Phase: Reversal Task Set Successfully Learned 

 

Figure 3.9 and Table 3.3 show the performance of the model over the entirety of 

the reversal phase.  Figure 2.3 and Movie 2.2 show the performance over the last 13 trials 

which are of the special testing type (see Section 2.2).  As with the training phase, 11 

(84.6%) of these trials are correct responses (though one has a repeat response, a double-

Shake), and 2 (15.4%) are missed responses.  After around 70 or so trials (5 simulation 

runs / 5,000 iterations / 500 s. ñreal-timeò), all 4 of the reversal conjunction were 

successfully learned.  Figure 3.10 shows the new Plan, Request, and Go unit 

representations for the 4 conjunctions.  Again, they are non-overlapping.  They are also 

notably different configurations than the representations in the training (and maintenance) 

phase which are shown in Figure 3.2. 
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3.2 Dopamine Manipulation Results 

 

 Two classes of effects are seen in response to hypo- and hyper-DA manipulations: 

behavioral vigor effects, and learning effects.  The main vigor effects to be explained are 

¶ Hypo-DA slowing of RT; 

¶ Hypo-DA suppression of behavior initiation; 

¶ Hyper-DA speeding of RT.  

The learning effects to be explained include 

¶ Hypo-DA impairment of acquisition (the training phase); 

¶ Hypo-DA impairment of acquired performance (the maintenance phase); 

¶ Hypo-DA impairment of reversal learning (the reversal phase); 

¶ Hyper-DA impairment of acquisition (the training phase); 

¶ Hyper-DA impairment of reversal learning (the reversal phase). 

3.2.1 Hypo-DA RT Slow-down 

 

As would be expected in a Parkinsonôs patient, hypo-DA leads to a slowed 

reaction time, but whether that effect is seen depends on which DA pathway is impaired.  

Figure 3.11 shows the effect of DA manipulations on the average RT of a maintenance 

simulation phase trial.  All RT data is collected from 5 trained (through the training 

simulation phase) ósubjectsô, each of which is submitted to 5 runs of trials, and is scored a 

mean RT by averaging over all trials where there is a response.  Nod/Shake pathway 

manipulation, which corresponds to the dorsal striatal pathway (SNc to dorsal striatum) 

leads to progressively slower RT as the ódosageô is increased of the antagonism.  No 

equivalent effect, however, is seen when only the Babble pathway (VTA to ventral 

striatum) has its DA depleted.  At the most extreme conditions (pr3 and pr2), an increase 
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in RT is seen when the Plan/Request (VTA to frontal cortex) pathway is DA-depleted, 

but it is an artifact due to the fact, to be discussed in Section 3.2.5, that DA depletion 

causes unlearning of the task.  The effects of global DA depletion (all pathways) are (in 

general, throughout all of these results) reflective of the superposition of the Nod/Shake, 

Babble, and Plan/Request effects. 

This DA RT-slowing effect is consistent with effects seen in Parkinsonôs patients 

and in rat and primate studies where DA antagonists are delivered or DA pathways are 

lesioned.  Figure 3.12 shows results of a meta-analysis of many human Parkinsonôs 

patients, both L-dopa medicated and unmedicated, performing RT tasks (Gauntlett-

Gilbert & Brown, 1998).  Both unmedicated and medicated patient groups have slower 

RTs relative to the control (non-PD) groups.  However, the L-dopa medicated subjects 

have less severe RT impairment, as can be seen in the plot by the fact that their 

performance is closer to the diagonal line.  Parkinsonism, at least at the early stage, 

corresponds with hypo-DA conditions in the Nod/Shake (dorsal striatal) pathway (Cools, 

2006).  The medicated and unmedicated conditions, then, may be viewed as two different 

levels of DA antagonism in the Nod/Shake pathway.   Another study of untreated 

Parkinsonôs patients performing a simple reaction task (Muller et al., 1999) also suggests 

that PD leads to decreases in reaction and movement time. 

In an operant conditioning rat study in which the subjects learn to respond to slow 

vs. fast stimuli (either visual or auditory pulse trains), selecting one of two levers for a 

food pellet reward (Robbins et al., 1990), delivery of different dosages of a DA 

antagonist to rats that have learned the task leads to increased reaction times, as can be 

seen in Figure 3.13(bottom).  Both the time it takes for them to poke their noses into the 
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food magazine to receive their reward (magazine latency) and the time it takes to press 

the correct lever (latency to correct) are increased with increasing dosage of the DA 

antagonist.  Figure 3.14 shows, for the same study, that during training sessions on this 

same task, rats show decreasing RT as they learn the task.  However, RT is significantly 

slower, both during the course of the learning and at the end, when the dorsal striatum 

(CAUD trace) is DA-lesioned through selective injection of the neurotoxin 6-OHDA.  On 

the other hand, consistent with the model results shown in Figure 3.11, DA lesions to the 

ventral striatum (NAS trace) do not show a significant increase in RT.  This is consistent 

with the idea that the dorsal striatum is selectively implicated in the óactorô pathway, the 

pathway that performs learned behaviors, while the ventral striatum is not. 

Lesion and drug-delivery studies in primates also show that DA depletion leads to 

slowing of RT.  In a macaque monkey experiment where MPTP was used to selectively 

lesion nigrostriatal DA neurons, it was seen (following L-dopa treatment necessary to 

restore some level of motor activity) that RT was increased in a simple reaching for food 

task (Schultz et al., 1989).  Another experiment with rhesus monkeys showed that 

delivery of either a D1 or D2 antagonist leads to slowed RT on a simple reaction task 

(Weed & Gold, 1998).  D1 antagonism in the model would lead to a raising of the Go 

unit thresholds and therefore decreased Go unit activity, whereas D2 antagonism would 

lead to a decrease in the NoGo unit thresholds and therefore increased NoGo unit 

activity. 

Figures 3.15 and 3.16 suggest, in terms of the model, how hypo-DA in the dorsal 

striatal pathway might lead to slower RTs.  The Nod/Shake Request units ramp up in 

their activity after the presentation of a colored square (see the first trace of Figure 3.15).  
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Once that activity clears a threshold, the Request unit is able to activate corresponding 

Go unit activity (as seen in the second trace).  Simultaneous Request and Go activity, 

then, initiates corresponding Init unit activity, as seen in the third trace, and this, in turn, 

leads to the execution of the behavior.  Hypo-, as compared with normal, DA conditions 

lead to an increase in the threshold for the Go units, shown by the shift of the horizontal 

blue line to the red.  This leads to a longer interval between the stimulus and the Init unit 

activity.  Figure 3.16 shows that hypo-DA leads to an average decrease of overall Go unit 

activity, an effect that is caused by the raised Go unit thresholds. 

3.2.2 Hypo-DA Behavior Suppression 

 

Not only do hypo-DA conditions lead to slowed RT, however, but also a net 

suppression of behavior: extreme akinesia.  Figure 3.17 shows that hypo-DA in the 

Nod/Shake pathway leads to an increase in the percentage of missed responses, failures to 

react to the presented stimuli.  Correspondingly, Figure 3.13(top) shows, for the rat study 

involving learning of the lever-pressing task, that the percentage of correct responses for 

rats that have learned the task decreases with increasing dosages of a DA antagonist 

(Robbins et al., 1990).  In the hypokinesia primate study of Schultz and colleagues 

(1989), MPTP delivery initially caused extreme akinesia, absence of self-initiated skeletal 

and eye movements.  Several days of L-dopa treatment were required before the monkeys 

were able to react sufficiently to have RT data collected in the task. 

In the model, the source of this behavior suppression can be traced to the lowering 

of the NoGo thresholds and the raising of the Go thresholds.  Figure 3.18 compares 

maintenance phase runs for one of the ósubjectsô under normal (a) vs. hypo-DA (b) 

conditions.  The Nod Plan and Request unit activity is basically the same in response to 
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the blue squares.  However, in the hypo-DA case, the Nod Go E units fire less reliably, 

and the Nod NoGo threshold is decreased and the NoGo units are activated during 

stimulus presentations, except periodically.   

What causes the hypo-DA model to respond around every third time rather than 

each time?  It is notable that after a response that the model is rewarded for, it always 

misses the next trial.  As the Go E units fail to activate in each of these cases, the likely 

cause is that the Go threshold is too high.  This is a result of the DA level dropping to its 

lowest level when the Frustration unit is reset.  In the second response after the rewarded 

trial, the Go E units activate somewhat late, but activation of the NoGo units precedes it, 

being triggered immediately at the onset of the Blue WM unit.  During the actual 

responses, the NoGo unit response tends to be weaker and the Go E units respond more 

quickly and less sluggishly.  Figure 3.16 shows how Nod/Shake hypo-DA conditions lead 

to decreased Go unit activity, and Figure 3.19 shows that (Nod/Shake) NoGo unit activity 

is increased by Nod/Shake hypo-DA conditions.  Through both influences, behavior in 

the model is suppressed until the Frustration level drives the DA level high enough to 

lower the Go thresholds and raise the NoGo thresholds enough to allow the Nod or Shake 

behavior to be gated. 

3.2.3 Hyper-DA RT Speedup 

 

While hypo-DA conditions in the Nod/Shake pathway lead to increases of RT, 

hyper-DA leads to decreased RT, as can be seen in Figure 3.11.  Figure 3.20 shows that, 

in a simple reaction time experiment involving baboons, moderate dosages (either 

chronic or acute) of cocaine, an indirect agonist, lead to decreases in RT (Hienz et al., 
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1994).  In a human subjects study, D-amphetamine, another indirect agonist, speeded RT 

in two discriminative response tasks (Halliday et al., 1994). 

Figure 3.21, mainly, shows how the Nod/Shake hyper-DA condition leads to a 

decreased RT.  Increasing dorsal striatal DA level leads to a decrease in the threshold on 

the Request unitsô triggering of a corresponding Go unit response (shown by the 

movement of the horizontal blue line to the red line).  Correspondingly, the interval 

between the onset of the visual stimuli and the onset of the Go unit, and thus the Init unit, 

shrinks.  Figure 3.16 shows that Nod Go unit activity, in fact, increases under Nod/Shake 

hyper-DA conditions, but not under Babble hyper-DA conditions.  Ventral striatal DA 

has no significant effect on RT. 

3.2.4 Hypo-DA Impairment of Acquisition  

 

As Figure 3.22 shows, hypo-DA has a negative impact on learning of the task 

during the training simulation phase.  The data points represent the percentage of 10 

ósubjectsô that successfully learn the initial (C AND Blue -> Nod) task.  The task is 

deemed learned if, in the last 13 trials of the training simulation phase, the model makes a 

correct response at least 25% of the time.  At extreme hypo-DA conditions, both 

Nod/Shake and Plan/Request (and global) manipulations lead to extreme likelihood of 

failure to learn the task, with pr2 and pr3 conditions effectively disabling learning and 

ns3 driving learning chances down to 10% (1 out of 10 subjects).  Babble hypo-DA is 

progressively, but less, disruptive, with the extreme b3 conditions leading to 4 out of 10 

subjects learning the task. 

Consistent with the Nod/Shake hypo-DA impairment, there is evidence that DA 

lesions of the dorsal striatum lead to significant deficits in task learning in rat and primate 
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studies (Packard & Knowlton, 2002; Robbins et al., 1990; Yin et al., 2004; Yin et al., 

2005).  Figure 3.23 shows that DA lesions of rat dorsal striatum lead to significantly 

increased numbers of errors made before the rats acquire a dual lever-pressing task 

(Robbins et al., 1990).  This number of errors is also increased, but far less, for ventral 

striatal lesions.  Figure 3.24 shows that lesions made specifically to the medial portion of 

the dorsal striatum can lead to impairment of lever-pressing task acquisition (Yin et al., 

2005).  In another rat study, 6-OHDA-generated lesions to specifically the lateral part of 

the dorsal striatum have been shown to disrupt stimulus-response habit formation (Faure 

et al., 2005).  There is also evidence that D1 antagonism, as well as NMDA antagonism 

localized to the rat nucleus accumbens core (part of the ventral striatum) leads to 

impairment of appetitive task learning (Smith-Roe & Kelley, 2000). 

Figures 3.25 through 3.28 suggest how the effects seen in Figure 3.22 are caused 

by the structure of the model.  Figure 3.25 shows that Nod/Shake hypo-DA can lead to 

failure of the Nod/Shake Go E units to be activated, a consequence of the raised Go unit 

thresholds when DA level is increased.  The model attempts to babble several times, but 

none of the babbles lead to an actual behavior being emitted.  (The final Nod behavior is 

probably due to novelty learning of the Plan/Request representations early in the run.)   

The Request units try many times to request a Nod, but the Go unitsô inactivity prevents 

them from driving the Nod Init unit over the activation threshold.   

Figure 3.26 shows how Plan/Request hypo-DA conditions can impair learning.  A 

specific weight between the Blue WM unit and one of the Plan units is shown.  Near the 

middle of the run, there is a Hebbian event and the eligibility trace becomes active.  A 

reward is delivered during this period and this drives the DA Signal level up above the 
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LTP threshold.  However, the hypo-DA manipulation in the Plan/Request pathway leads 

to a shifting of the DA effect down so that the reward is unable to drive the effect over 

the LTP threshold.  Thus, the weight fails to learn, despite reward.  Generally, the Plan 

and Request units fail to learn the necessary representations under extreme hypo-DA 

conditions.   

Babble hypo-DA conditions may or may not lead to acquisition failure. In both 

Figures 3.27 and 3.28, early learning leads to the Plan and Request units learning a 

representation for C AND Blue.  However, too few Plan units learn the representation in 

Figure 3.27 during what is probably a novelty-driven babble.  No further babbles happen 

in this run, probably due to the raised Babble Go unit threshold caused by the DA 

depletion.  On the other hand, in Figure 3.28 novelty-driven learning leads to enough 

Plan units being a part of the representation that the model ends up responding to the 

conjunction appropriately.  (See Section 3.1.1.3 for a discussion of how novelty-learning 

works in the model.) 

3.2.5 Hypo-DA Impairment of Acquired Performance 

 

Not only does hypo-DA impair learning of the initial task (C AND Blue -> Nod), 

but in the most extreme cases, also causes actual unlearning of the previously learned 

task.   Figure 3.29 shows the effects of DA manipulations on 5 ósubjectsô that, during the 

maintenance simulation phase, are required to make the same Nod response to C AND 

Blue.  The percent of subjects that have retained the learning is determined, by looking, 

for each subject, at whether the last 13 trials have greater than 25% correct responses.  In 

the two most extreme Nod/Shake and Plan/Request (and global) cases, loss of learning of 
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the task is effectively guaranteed, with the exception of ns3, where 1 of the 5 subjects 

manages to retain the task response. 

The rat DA-lesioning study of Robbins and colleagues (1990) provides an 

example of how DA impairment of the dorsal striatal pathway can impair a learned task.  

Some of the rats trained on the dual lever-pressing task are given actual dorsal striatal 

lesions, and the others are given sham lesions.  As Figure 3.30 shows, when the sham 

group is returned to the task, only a few sessions are necessary for the rats to regain their 

performance.  On the other hand, the dorsal striatal DA-lesioned group requires a 

relearning period comparable in length to the initial training period.  In another rat study, 

one involving the dorsomedial striatum, temporary deactivation of this area by the GABA 

agonist, musicimol, leads to reduced performance of a learned lever-pressing task, as 

shown in Figure 3.31 (Yin et al., 2005).  Thus, at least a portion of the dorsal striatum 

seems to be important in the óactorô performance of learned tasks. 

Figures 3.32 and 3.33 show how the loss of the learned task transpires in the 

model.  As shown in Figure 3.32, Nod/Shake hypo-DA leads to unlearning of the Go unit 

weights shortly after the model is rewarded for a correct behavior.  This happens because 

reward resets the Frustration level which causes the DA Signal activity to fall to its 

minimum.  Under normal DA conditions, this doesnôt cause any weight changes, but here 

the DA level for the Nod/Shake Go units drops below the LTD threshold, and the weights 

are unlearned.  As seen in Figure 3.33, a similar unlearning transpires for Plan/Request 

units when the Plan/Request pathway is DA-depleted, though the unlearning happens 

immediately upon the appearance of the stimulus because the Plan units are activated 
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right away before the Frustration level has had a chance to drive the DA level high 

enough to avoid unlearning. 

3.2.6 Hypo-DA Impairment of Reversal Learning 

 

Hypo-DA impairs learning, not only during the training and maintenance phases, 

but also during the reversal phase when the model, having been trained successfully on 

the C AND Blue -> Nod task, is retrained on the C AND Blue -> Shake task.  Figure 3.34 

shows a similar degradation to the reversal learning as was seen for the initial task 

acquisition shown in Figure 3.22.  The data points represent the percentage of 10 

ósubjectsô that successfully learn the new (C AND Blue -> Shake) task.  At extreme 

hypo-DA conditions, both Nod/Shake and Plan/Request (and global) manipulations lead 

to high likelihood of failure to learn the reversal task, with pr2, pr3, and ns3 conditions 

effectively disabling relearning.  Babble hypo-DA is progressively, but less, disruptive, 

with the extreme b3 conditions leading to 6 out of 10 subjects learning the reversal task. 

The effect of hypo-DA during the reversal simulation phase is effectively a 

combination of its effects on the training and maintenance phases.  The effects shown in 

Figures 3.32 and 3.33 would cause the initially learned task to be become unlearned, and 

the effects shown in Figure 3.25 through 3.27 would also apply, impairing any possible 

learning of a new task. 

3.2.7 Hyper-DA Impairment of Acquisition  

 

Figure 3.22 shows that not only hypo-DA conditions, but also hyper-DA 

conditions, can impair learning in the model of the initial (C AND Blue -> Nod) task.  

Neither Nod/Shake (dorsal striatal) or Babble (ventral striatal) hyper-DA conditions lead 
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to learning failures, but Plan/Request (frontal cortex) hyper-DA leads to difficulty 

learning the conjunction with only 6 out of 10 subjects succeeding in the PR5 case.   

Figure 3.35 shows evidence that ratsô learning of lever-pressing tasks may be 

impaired by D-amphetamine (Idris et al., 2005).  The percentage of correct lever-presses 

is, in fact, decreased for both the initial and reversal tasks.   

But how does hyper-DA impair learning?  Figures 3.36 and 3.37 suggest that the 

cause might be perseveration on wrong responses.  In Figure 3.36, it can be seen that on 

the third babble, when the model is trying to learn the C AND Blue -> Nod task, it 

randomly chooses the wrong behavior (Shake).  It continues for most of the rest of the 

simulation run making that wrong response, despite being repeatedly punished.  Figure 

3.37 shows why: the Plan DA effect level is shifted up by the hyper-DA effects in the 

Plan/Request (frontal cortex) pathway.  Whereas the punisher dips cause the DA Signal 

unit level to drop below the LTD threshold, this is not true of the Plan DA effect variable.  

Therefore, the punishers fail to cause unlearning, although the other condition for 

plasticity is met, i.e., eligibility trace activity.  As Figure 3.38 shows, however, a correct 

guess during a babble can allow the model to avoid such perseveration. 

3.2.8 Hyper-DA Impairment of Reversal Learning 

 

As well as impairing the initial acquisition of the DA manipulation task (C AND 

Blue -> Nod), perhaps not surprisingly, hyper-DA also impairs reversal learning (i.e., 

learning of the C AND Blue -> Shake task).  Figure 3.34 shows that, as in Figure 3.22, 

neither Nod/Shake or Babble hyper-DA conditions lead to learning failures, but 

Plan/Request (frontal cortex) hyper-DA leads to difficulty learning the reversal 

conjunction.  Only 4 out of 10 subjects learn the reversal conjunction in the PR5 case.   
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As mentioned in Section 3.2.7, Figure 3.35 shows that hyper-DA can affect 

reversal learning on lever-pressing tasks in rats (Idris et al., 2005).  In the model, the 

reasons for the failure are similar to the reasons for failure during the initial acquisition, 

but there is an added difficulty caused by the fact that the model begins having acquired 

the wrong response.  Figure 3.39 shows that the model is punished several times for 

performing the erstwhile correct response, though it recovers during a correct babble near 

the end of the run.  Figure 3.40 shows that, again, the problem is that the Plan DA effect 

never dips below the LTD threshold, even during punisher dips.  Moreover, the model is 

in a chronic hyper-DA state where the Plan units tend to be in an LTP mode, always 

ready to learn when a Hebbian event occurs.  It is as if the model is stuck in a spurious 

reward state that is insensitive to the reality of the punishment it receives.  What seems to 

allow the model to recover is that it makes a correct babble that interferes with the 

incorrect response and the new correct response overwrites the representation driving the 

wrong behavior.  
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Chapter 4: Discussion 

4.1 Theory Embodied in the Model 

 

The neurocomputational model in this dissertation, and the results collected for its 

performance on the full task set and under the DA manipulation conditions using the 

simplified task set, together suggest a preliminary theory of dopamineôs functional role in 

the learning and performance of stimulus-response tasks.  This section will elucidate that 

theory and summarize it and discuss its implications. 

As laid out in Section 1.1.4, the research questions this dissertation set out to 

address were as follows: 

1. What is the neural substrate of task-oriented behavior selection (TOBS)? 

2. How are TOBS behaviors learned by this substrate? 

3. What role does the neurotransmitter dopamine play in the learning and 

performance of these behaviors? 

The next three subsections review theoretical elements for each of these.  The 

italicized statements collectively represent a summary of the theory.  Section 4.1.4 then 

discusses some salient implications of the theory. 

4.1.1 Neural Substrate of TOBS 

ψȢυȢυȢυ Ȭ!ÃÔÏÒȭ 0ÁÔÈ×ÁÙ 

 

A frontocortical (dorsal striatal / óactorô) pathway is involved in the performance of 

learned TOBS behaviors. 

The green-labeled blocks in Figure 2.6, along with the Action Gating mechanism, 

constitute the dorsal striatal pathway.  This is the pathway that is ultimately responsible 

for initiating a voluntary behavior, either learned or randomly explored. 
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The prefrontal cortex (PFC) represents stimulus context (e.g. color and tone working 

memory). 

The Stimulus Presence, Color WM, and Tone WM units maintain these 

representations.  Details are given in Section 2.3.5.  Similar types of units can be 

imagined for other sensory modalities. 

PFC (Plan units) and its connection to frontal premotor areas (Request units) mediates a 

mapping between stimulus context and response. 

As explained in Sections 2.3.7 and 2.3.11, the Plan units respond selectively to 

Stimulus Presence, Color WM, and Tone WM conjunctions.  Ultimately, the Plan units 

self-organize in their responses so that particular stimulus conjunctions lead to distributed 

representations of 3 to 5 units, such as those shown in Figures 3.2 and 3.10.  The Plan 

layer activity propagates forward to the Nod and Shake Request units. 

Frontal premotor units (Request/Init/Exec) are gated by a dorsal striatal (Action Gating) 

circuit. 

Sections 2.3.7 and 2.3.11 explain the operation of the Request units.  The Request 

and Init units are assumed to be a part of the same premotor area cortical columns, and 

the Action Gating module provides a means of gating or vetoing Request activity, leading 

to Nod or Shake Init unit activity.  Figure 2.9 shows the architecture of the Action Gating 

module, and Section 2.3.8 describes its complex operation. 

Frontal premotor units (PMC/SMA) initiate motor responses. 

Section 2.3.4 explains the Nod, Shake, and Track Exec units.  The Nod and Shake 

Exec units are driven by the corresponding Init units (see Figure 2.9).  Once the Nod or 

Shake Exec units are engaged, they do not disengage until the behavior is completed. 
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ψȢυȢυȢφ Ȭ"ÁÂÂÌÅȭ 0ÁÔÈ×ÁÙ 

 

A cingulostriatal (ventral striatal / óbabbleô) pathway may be involved in triggering of 

random explorative behaviors when an organism is motivated and hasnôt received a 

reward over a long interval. 

The red-labeled blocks in Figure 2.6, along with the Babble Gating mechanism, 

constitute the ventral striatal pathway.  This pathway randomly stimulates activation and 

behaviors in the dorsal striatal óactorô pathway. 

Anterior cingulate cortex (ACC) takes as input reward and visceral state information to 

monitor hunger/frustration (Frustration unit). 

Section 2.3.6 describes the operation of the Frustration unit, Figure 2.7 shows its 

input connectivity, and Figure 2.8 shows an example of its dynamic.  By default, the 

Frustration unit activity increases, but it is reset by reward deliveries. 

ACC (Babble Request units) monitors frustration and novelty in stimuli and triggers 

random ñbabbleò activation (in Babble units) under high frustration or novelty 

conditions. 

Section 2.3.7 describes the activity of the Babble Request unit.  It is driven high 

by great Novelty or Frustration unit activity.  If this activity is gated by the Babble Gating 

circuit, it randomly triggers Babble unit activity such that one of the 8x8 units is 

activated. 

ACC babble units are gated by a ventral striatal (Babble Gating) circuit. 

Section 2.3.9 describes the operation of the ventral striatal Babble Gating module, 

and Figure 2.11 shows its unit connectivity. 
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ACC (Babble units) outputs to PFC (Plan) and premotor (Nod/Shake Request) units to 

trigger explorative behaviors. 

As Section 2.3.12 explains, a single Babble unit is randomly selected every time a 

Babble Exec activation is made.  Section 2.3.10 describes the mechanism that generates 

neural noise which is used, not only in selecting which Babble unit is activated, but also 

which striatal units are selected in the Action and Babble gating mechanisms.  The 

random selection of the Babble unit, in combination with random feedforward weights to 

the Plan and Request units, leads to random activation in the Plan and Request layers.  

Request activation, then, can result in initiation of the babble behavior in the óactorô 

pathway. 

ψȢυȢυȢχ Ȭ#ÒÉÔÉÃȭ 0ÁÔÈ×ÁÙ 

 

Reinforcement of explorative behaviors that were triggered by the cingulostriatal 

pathway allows learning of new TOBS stimulus-response mappings in the frontocortical 

pathway. 

There is a ócriticô pathway extending from the outcome various outcome 

processing units (see Figure 2.7) through the DA Signal unit to the Plan and Request 

units and the Go and NoGo units of the Action and Babble Gating modules.  Signals from 

this allow the ñstamping inò of rewarded random babble behaviors, as well as the 

ñstamping outò of punished behaviors. 

DA-ergic midbrain cells signal reward-learning and punishment-unlearning: substantia 

nigra pars compacta (SNc) and ventral tegmental area (VTA). 

Section 2.3.13 explains the learning algorithm.  As reviewed in Section 4.1.3.2, it 

is the phasic DA signal that is responsible for learning and unlearning. 
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DA cells set the permissiveness of Action and Babble Gating. 

As explained in Section 2.3.8, and as reviewed in Section 4.1.3.1, the tonic level 

of DA is involved in setting the permissiveness of Go and NoGo unit activity in the 

Action and Babble Gating modules. 

The dorsal striatum (Nod/Shake path) is innervated by SNc. 

This pathway, the nigrostriatal pathway, is the most intensively studied DA 

pathway, probably due to its involvement in Parkinsonôs disorder. 

The ventral striatum (Babble path) and PFC (Plan/Request path) are innervated by VTA. 

The mesoaccumbal pathway has been mostly studied in drug addiction and 

electrical reward self-stimulation research.  The mesocortical pathway has been studied in 

working memory research, as the proper function of PFC working memory depends on 

DA.  The precise role of VTA activity in signaling cortical learning, however, needs 

more thorough investigation. 

4.1.2 Dynamics of TOBS Substrate 

 

The dorsal striatal (óactorô) pathway begins in a naïve, unresponsive state. 

The Plan and Request afferent weights are initialized to a very small number, so 

that the óactorô pathway is initially unresponsive to stimuli. 

The ventral striatal (óbabbleô) pathway triggers explorative behaviors in absence of 

recent reward. 

If the model will not respond to stimuli initially, then any behaviors it selects 

must be explorative in nature.  The óbabbleô pathway allows random trial of a behavior 

when the organism is motivated to ñtry somethingò. 
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Correct guesses trigger learning along the dorsal striatal pathway, causing learning of 

stimulus context-to-response mappings. 

Assuming a correct babble, and sufficient stimulation of random Plan and Request 

layer representations, reward leads to ñstamping inò of the Plan and Request 

representations in the context of the stimulus. 

Sudden reversal of reward conditions triggers punishment which causes unlearning of 

old mappings. 

If, as during reversal learning conditions, the old response patterns are now 

punished rather than rewarded, then the old Plan and Request representations are actively 

ñstamped outò. 

Under lack of reward under reversal conditions, babble behaviors re-emerge which leads 

to learning of new correct mappings. 

When the old responses have been ñstamped outò, effectively the model is 

returned to a state where it must relearn the proper stimulus mapping from scratch.  This 

it does, in the usual way, through random babbling, followed by reward for a correct 

guess. 

4.1.3 DA Role in TOBS Learning and Performance 

ψȢυȢχȢυ 4ÏÎÉÃ $!ȭÓ 2ÏÌÅ 

 

Base-line (tonic) rates of DA activity signal óactivity-oriented motivationô. 

This is one of the primary hypotheses of this dissertation.  Overall high levels of 

DA signal occur during times when an organism is highly motivated to act, for whatever 

reason.  Such reasons may include anticipation of rewards or craving or extreme 

deprivation.  Low levels of DA, on the other hand, occur when the organism is less 
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motivated to act, whether because of essential satiation of needs, or because of 

withdrawal from its external environment. 

Frustration (e.g. from unsatiated hunger) and novelty in the environment encourage 

action over inaction.  Thus, both excite DA release. 

Figure 2.8 shows how Frustration and Novelty unit activity both excite the DA 

Signal level, though the Novelty unitôs effect is phasic in nature.  It is intuitive that either 

situations of long-standing non-reward or novelty would encourage an organism to try 

out new behaviors, explore new ways of interacting with the environment in an attempt to 

find adaptive (or more-adaptive) responses to the stimuli. 

The tonic dopamine level regulates the baseline level of gating allowed by striatal 

pathways (high-DA decreasing Go unit thresholds and increasing NoGo unit thresholds). 

Figure 2.10 shows the influence of DA level on Go and NoGo threshold activity.  

Essentially, high-DA states potentiate initiation of action, whereas low-DA states 

suppress initiation of action.  Through different pathways, Nod and Shake, and Babble 

initiations are both regulated by DA level. 

The tonic DA effect in dorsal striatal pathway also regulates RT because of slow cortical 

behavior request activity onset (low-DA increasing RT and high-DA decreasing RT). 

Figures 3.15 and 3.21, respectively, show how hypo- and hyper-DA conditions in 

the óactorô pathway affect RT.  Hypo-DA effects correspond with Parkinsonian akinetic 

effects on RT, whereas hyper-DA effects correspond with psychostimulant motor effects.  

Section 3.2.1 describes the hypo-DA RT slow-down, and Section 3.2.3 the hyper-DA RT 

speedup.   
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4.υȢχȢφ 0ÈÁÓÉÃ $!ȭÓ 2ÏÌÅ 

 

Phasic dopamine signals (superimposed on the tonic signal) regulate learning in the 

frontal cortex and striatum. 

Section 2.3.13 describes the learning algorithm and Figure 2.18 shows the LTP 

and LTD ranges for the two types of DA target cells. 

Phasic bursts, driven by (food) rewards or novel stimuli, trigger LTP in most target areas 

(frontal cortex and D1-dominated striatal óGoô cells) and LTD in others (D2-dominated 

striatal óNoGoô cells). 

Figure 2.18 shows the described ranges.  Phasic bursts, in the absence of 

significant ambient hypo-DA effects, lead to DA levels that rise over the upper learning 

threshold. 

Phasic dips, driven by punishers, trigger LTD in most target areas (frontal cortex and 

D1-dominated striatal óGoô cells) and LTP in others (D2-dominated striatal óNoGoô 

cells). 

Figure 2.18 shows the described ranges.  Phasic dips, in the absence of significant 

ambient hyper-DA effects, lead to DA levels that fall below the lower learning threshold. 

ψȢυȢχȢχ 3ÙÎÏÐÓÉÓ ÏÆ $!ȭÓ 2ÏÌe and Behavioral Implications  

 

DA cell activity superimposes óactivity-oriented motivationô (tonic) and 

learning/unlearning (phasic) signals. 

This is a statement of the essential hypothesis of this dissertation.  Some 

implications of the superposition of these two signals will be discussed in Section 4.1.4.1. 
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Depletion of DA can lead to sluggish behavior initiation, slower RT, failure to learn 

tasks, and even spurious unlearning of tasks. 

These effects were discussed in Sections 3.2.2, 3.2.1, 3.2.4, and 3.2.5, 

respectively, and shown in Figures 3.17, 3.11, 3.22, 3.29, and 3.34. 

Excess DA can lead to faster RT, spurious learning, and failure to unlearn incorrect 

behaviors. 

These effects were discussed in Sections 3.2.3, 3.2.7, and 3.2.8, and shown in 

Figures 3.11, 3.22, and 3.34. 

4.1.4 Further Implications of the Theory  

4.1.4.1 Interaction of Tonic and Phasic DA Effects 

 

 Because of the DA learning dynamics shown in Figure 2.18 and the simultaneous 

effect on the thresholds of the Go and NoGo units, as shown in Figure 2.10, there is an 

interaction between the phasic (learning) and the tonic (vigor) DA effects.   As Figure 

2.10 shows, phasic bursts lead to temporary threshold dips in the Go units which could 

allow them to temporarily potentiate new behaviors.  On the other hand, the same bursts 

lead to spikes in the NoGo thresholds which could temporarily disable vetoing power of 

the NoGo units.  Phasic dips have an even more pronounced effect, temporarily raising 

the Go thresholds and dropping the NoGo thresholds.  This could respectively inhibit 

behavior initiation and potentiate vetoing of behaviors. 

 Conversely, there is also an effect of the tonic DA level on learning.  Hypo-DA in 

a pathway effectively shifts the DA activity for that pathway with respect to the 

thresholds shown in Figure 2.18 down.  If sufficiently inhibited, phasic DA bursts will 

fail to trigger learning in the Go, Plan, and Request units and unlearning in the NoGo 
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units.  In extreme hypo-DA conditions, the model can be stuck in a default state where 

the Go, Plan, and Request units unlearn during Hebbian events and the NoGo units learn.  

On the other hand, tonic hyper-DA conditions shift the DA activity for a given pathway 

up with respect to the LTP and LTD thresholds.  At extreme enough hyper-DA 

conditions, the DA level will be stuck by default over the upper threshold, and phasic 

dips will fail to drive the DA level below the lower threshold.  The result impairs 

punishment unlearning and triggers spurious learning after Hebbian events. 

 Frank and colleagues (2004) have noted that Parkinsonôs patients that are 

unmedicated tend to learn more effectively through punishment, whereas L-dopa-

medicated patients tend to learn more effectively through reward.  The model in this 

dissertation could explain this through the tonic/phasic DA interactions.  Specifically, 

hypo-DA (the unmedicated PD condition) could lead to a higher likelihood of phasic dips 

falling below the LTD threshold of Figure 2.18 (i.e., for Go, Plan, and Request units), 

whereas hyper-DA (the L-dopa condition) could lead to a higher likelihood of phasic 

bursts rising over the LTP threshold. 

ψȢυȢψȢφ %ÖÏÌÕÔÉÏÎ ÏÆ !ÃÔÉÖÉÔÙ 3ÔÁÔÅÓ ÁÎÄ $!ȭÓ 2ÏÌÅ ÉÎ )ÎÄÉÖÉÄÕÁÌ 4ÅÍÐÅÒÁÍÅÎÔ 

 

 Why might it have been adaptive for organisms to develop the kind of 

tonic/phasic DA control mechanism described in this dissertation?   There are distinct 

circumstances for an organism when more or less behavioral activity is desirable.  

Generally speaking, too little activity will lead to fewer rewards being gained and, in the 

most extreme cases, starvation.  On the other hand, too much activity will expend more 

metabolic energy that must be replenished through more food intake, and could lead to 

more tissue damage.  Hyperactivity is likely to lead the organism to engaging in 
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physically or socially risky behaviors that may jeopardize the organismôs life or 

reproductive success.  Having distinct waking and sleeping states addresses some of this 

issue, as the waking state allows the organism to forage and mate, whereas the sleep state 

allows the organism to conserve metabolic energy and repair (more rapidly) damaged 

tissues and replenish depleted neurotransmitter stores. 

However, even in the waking state, there are times when more or less activity is 

beneficial.  When the organism is hungry or when cues in the environment suggest that 

the organism has an opportunity to gain a reward, then it may be worthwhile for the 

organism to respond more frequently and easily.  In fact, it might be said that when the 

organism has the sense that the opportunity cost of inaction is high, then the organism 

would be better off in a state of higher base-level motivation (Niv et al., 2006).  On the 

other hand, if the organism is satiated and would gain little by further foraging or mating, 

then it would probably be preferable for the organism to fall into a more restful, less 

active state which would conserve energy and keep the organism out of trouble.  It would 

therefore be adaptive for an organism to evolve a global signal for óactivity-oriented 

motivationô.    The centrally located DA nuclei, with their global neuromodulatory 

influences on frontal neocortical and striatal circuitry involved in behavior, are well-

situated to provide such a role. 

The DA nuclei are likewise well placed to perform a role as a global 

learning/unlearning signal.  Why might these signals piggyback on each other?  It may 

have been an evolutionary accident.  However, it would have been a fortuitous accident 

because, when the organism is in a high-motivation state, it probably makes sense that the 

organism should ignore relatively minor punishers and be more sensitive to even 
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potential rewards.  On the other hand, if the organism is in a low-motivation state, it 

would be less adaptive to take risks and, therefore, it makes sense to ignore minor 

rewards and be more sensitive to punishers. 

With the above in mind, we may imagine that organisms tend to operate in a 

typical range of motivation states during their waking hours, peaking when they are 

hungry or in a friendly, potentially rewarding environment; and dipping when they are in 

a hostile or unrewarding environment or are satiated or fatigued.  While an individualôs 

motivation state can be expected to fluctuate within this range, it seems plausible to 

suppose that some organisms might tend to run ñhotò or ñcoldò in their motivation.  The 

particular bias they have in their range of motivation may be due to simple, genetically-

determined differences in the DA receptor proteins, such that some individuals possess 

more sensitive, higher-affinity DA receptors (the ñhotterò temperaments), and others have 

more sluggish, lower-affinity DA receptors (the ñcolderò temperaments).  Depue and 

Collins (1999) discuss extraversion (what they term ñagencyò) as being determined by 

base DA levels.  The model in this dissertation could model ñextravertedò tendencies 

through a mild global hyper-DA effect; on the other hand, certain aspects of 

ñintroversionò could be modeled through a mild hypo-DA effect in the model.  

Hyperactivity, sensation- and novelty-seeking, and tendency to more risk-taking and 

ignoring of punishment consequences would be expected of hyper-DA individuals.  On 

the other hand hypo-DA individuals would tend to be less active (more ñphlegmaticò), 

more sensitive to punishment, and more risk-averse, perhaps.  Genetic DA receptor 

factors may set a baseline temperament of individuals, but it is also possible that the 

overall level of reward vs. risk in the environment could foster the development of an 
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individual bias in DA activity, though the potential developmental mechanisms need to 

be investigated. 

Assuming that serotonin generally has an opposing effect to DA (Daw et al., 

2002), this may explain the anti-anxiety and soporific effects of serotonin.  5-HT may 

tend to drive the organism into a lower motivation state which would be less impulsive 

and more relaxed, though not necessarily one of increased positive affect.  (In fact, hypo-

DA or hyper-serotonin would probably both lead to states of anhedonia and/or apathy, 

although 5-HT may reduce stress response through its effect on the hypothalamic-

pituitary-adrenal axis (Panksepp, 1998) .) 

It is a tempting hypothesis that strong emotions that motivate immediate action 

are likely to temporarily boost the tonic DA signal.  Anticipation, anger, fear, sexual 

desire, or acute pain or distress should lead to a willingness of the organism to expend 

more effort to take actions that address the strong emotions.  On the other hand, chronic 

depressive states (e.g. grief or physical exhaustion) may inhibit the DA signal temporarily 

so that the organism tends to behave in a more reserved and risk-averse fashion.   

The above hypotheses potentially suggest means of pharmacological intervention 

under various affective disorders, or at least provide a preliminary explanation of how the 

currently prescribed drugs may exert their motivational and affective influences. 

4.1.4.3 Pathway Dependence of DA Effects 

 

 An important observation this dissertation emphasizes is that the effects of 

pharmacological (or otherwise) manipulation of DA level will depend on which DA 

pathways are affected.  Teasing apart the distinct roles of the various DA (and other 

neuromodulator) pathways is a major task that is fruitful to undertake at this stage.  
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Delivery of globally-acting agonists or antagonists is a blunt instrument of clinical 

intervention.  In the worst case, delivery of a nonselective (D1/D2) antagonist can lead to 

such global impairment of motor behavior that the therapeutic benefits are outweighed by 

the side-effects.  Development of D2-specific neuroleptics, for example, allowed more 

selective influence (presumably of the NoGo pathways).  It would be beneficial if a 

technology could be developed that could, for example in Parkinsonôs patients, stimulate 

DA receptor activity selectively in the dorsal striatal pathway, at least at the early stages 

of the disease when only the dorsal striatal pathway is impaired.  For patients suffering 

high-anxiety depression states, it might be useful to selectively DA-antagonize the BA 25 

portion of the anterior cingulate cortex.  (It might also be useful for depression if 

serotonergic drugs could be developed that selectively affect 5-HTôs influence on the 

hypothalamic-pituitary-adrenal axis, so the stress response is selectively inhibited.) 

 How might pathways be selectively agonized or antagonized?  One possibility 

might be that new drugs could be developed that are selective for specific pathways.  It is 

not apparent to the author how this might be done, though it would be theoretically 

possible if the DA receptor G-proteins had subtle distinctions in the different pathways 

that were analogous to the differences currently recognized between DA receptor types.  

If every pathway effectively had its own receptor type, then a drug might, in theory, be 

developed selective for each pathway. 

 Given current (or near-future) technology, the only alternative that occurs to the 

author involves selective surgical implantation of a device that releases or stimulates the 

release of DA in a particular pathway in order to allow selective agonism.  For 

antagonistic effects, the implant would need to inhibit, in a pathway-specific fashion, 
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release of the neurotransmitter.  Such an implant may be a better alternative than 

selective lesioning, as its effects could perhaps be reversed or progressively tweaked in 

the manner that drug dosages may be progressively modified.  In the distant future, 

perhaps localized genetic manipulation of neuronal or glial cells in the pathological areas, 

or outright grafting of healthy cells, may be an option. 

4.1.4.4 Hyper-DA, Perseveration, and Spurious Learning 

 

An interesting implication of the model with respect to psychostimulant effects is 

the idea, observed in Sections 3.2.7 and 3.2.8, that hyper-DA conditions may lead to a 

chronic spurious reward state in the organism.  This state leads to both spurious learning 

during an incorrect babble, and a perseveration of wrong responses in the face of 

punishment.  It is plausible that this kind of effect could be seen during psychostimulant 

intoxication.  However, it is not clear what DA pathway is responsible for this effect.  

The model suggests that the VTA-to-frontal cortical pathway is responsible for the 

perseveration; however, cocaine, for example, does not have much effect on the 

mesocortical pathway, due to the lack of DAT reuptake in frontal neocortex.  However, 

some indirect effect due to VTA DA cell excitation, perhaps caused by mesoaccumbal 

pathway activity, cannot be entirely ruled out. 

4.1.4.5 Novelty-Induced Learning and Behavior  

 

Extant work on phasic DA learning effects mentions, but does not place much 

emphasis on, the potential role of novelty in inducing learning.  Novelty is likely, also, to 

induce spontaneous behaviors.  Both effects are seen in this model.  

But why should novelty stimulate spontaneous behavior and learning?  What is 

the adaptive value?  Generally, when a novel stimulus is encountered by an organism, it 
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represents a perceived change in the organismôs environment.  Whether the change is for 

better or for worse is not immediately apparent, but it is in the organismôs adaptive 

interest to be more alert and to expend more effort to learn more about the stimulus to 

determine if it is a potential reward or a threat.  Engaging non-specific explorative 

behavior patterns in the presence of salient stimuli encourages the organism to learn more 

about them (Ikemoto & Panksepp, 1999).   

In addition, it might be useful for the stimulus to trigger learning, at least during 

the first occurrences when it is still considered novel.  This would stimulate the formation 

of a default learned response.  This would mean having an optimistic bias initially 

towards a novel stimulus, perhaps, provided there are no obvious threat cues 

accompanying it.  If the encouraged behavior was the wrong one, or the new stimulus 

emitted threat cues later, then this default learned behavior could be unlearned, and 

avoidance behavior could perhaps be learned later, in its place.   

Without an optimistic bias towards novel stimuli, organisms may be less likely to 

capitalize on new advantages entering the environment.  There may be another pathway 

that exists, however, that can learn to map novelty to anxiety and fearful responses.  (The 

amygdala seems a likely candidate area for performing this mapping, and this in turn 

could trigger activity in the hypothalamic-pituitary-adrenal axis.)  Chronically hostile 

environments might cause the stress responses to novel stimuli to overcome the 

explorative tendencies encouraged by the DA pathways. 

4.2 Model Predictions  
 

Primarily, the model was constructed to explain known effects of hypo- and 

hyper-DA manipulations: in particular, effects on RT of both hypo- and hyper-DA 
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conditions; and the impairment of learning caused by hypo-DA conditions in the dorsal 

striatum, such as occurs in Parkinsonism.  Table 4.1 summarizes the results covered in 

Section 3.2.  Each entry in the table represents a potential test that might be performed in 

animal subjects and the predicted result of that test.  Some of the effects shown (for 

example, the dorsal striatal hypo-DA slowdown of RT) have been clearly demonstrated 

in the literature, but to the authorôs knowledge, no systematic study has been performed 

comparatively manipulating the specific anatomical pathways with DA antagonists and 

agonists, though Robbins and colleagues (1990) compare two of these pathways for 

hypo-DA conditions (dorsal vs. ventral striatal).  Doubtless, there are other DA pathways 

not studied or modeled here that it would also be useful to manipulate, such as the VTA-

to-amygdala pathway.  Likely, each of these pathways has its own set of DA executive 

control and learning effects. 

Some of the salient behavioral effects predicted by the model that bear further 

investigation include the effects of hypo- and hyper-DA manipulations of the VTA-to-

frontal cortex pathway on learning, and the triggering by novel stimuli of both 

explorative action and learning.  The model would suggest that mesocortical DA 

depletion should disrupt learning of S-R mappings that require neocortex.  Some 

brainstem-basal ganglia pathways might still allow S-R learning, but more flexible tasks 

requiring frontal neocortical implementation may be much more difficult to learn.  

Moreover, the model would predict that DA depletion in the PFC and premotor areas 

may actually cause unlearning/forgetting of existing task mappings.  The model would 

also predict that too much DA activity along the mesocortical pathway would tend to lead 

to spurious learning and behavioral perseveration, as discussed earlier.  Generally, the 
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effects of DA on frontal cortical learning need to be more closely investigated.  As 

already mentioned (in Section 4.1.4.5), the model predicts that both behavior initiation 

and learning may be triggered by novel stimuli.  The mesocortical pathway, again, would 

be important in the learning, and the ventral striatal (cingulostriatal) pathway is likely to 

be important in novelty cueing of explorative behaviors. 

Probably the most interesting and useful predictions made by the model relate to 

specific neural mechanisms that are behind the observed performance and learning 

effects.  One of the key mechanisms proposed in this dissertation is the cingulostriatal 

óbabbleô pathway for producing explorative behavior.  How spontaneous, quasi-random 

behaviors are generated and what circuits are involved is an area that deserves more 

investigation in animal studies.  The model also suggests a mechanism (depicted by 

Figures 3.15 and 3.21) by which the level of dorsal striatal DA regulates the RT for 

learned responses.  In short, the idea is that the striatal ñrequestò afferent activity takes a 

substantial period of time to build up.  The striatal Go unitsô thresholds will be set by 

tonic DA activity and this will cause the latency between the start of ñrequestò activity 

buildup and basal ganglia gating of a behavior to vary with DA level. 

The model also makes some predictions about the cellular mechanisms of 

learning that deserve closer investigation.  The existence of synaptic memory for 

ñHebbian eventsò, i.e., the specific kind of eligibility trace proposed in this model, should 

be tested for in animal studies, both in vivo and in vitro.  A further interesting feature of 

the learning algorithm in this model is the heterosynaptic competition that is used in the 

LTP of the learning synapses.  One problem with Hebbian learning without competition 

is that weights may grow over a period of time so that the unit is hyperactive in its 
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response and responds in a logical OR fashion to a wide variety of stimuli so that its 

response is, in a sense, too ópromiscuousô and not selective enough to be useful.  

Heterosynaptic competition, however, allows neural units to specialize more in their 

response to particular stimuli or stimulus conjunctions.  In this dissertation, the bounded 

arbor-weight total allows learning of specific stimulus conjunctions with ñdonôt careò 

conditions.  (See Section 2.3.13 for further discussion of this.) 

4.3 Research Contributions  

 

This dissertation has attempted to formulate a preliminary theory of the learning 

and performance of task-oriented behavior selection, and the role played by dopaminergic 

neuromodulation.  The model developed here embodies an explanatory theory (discussed 

in Section 4.1), and makes some predictions (discussed in Section 4.2) regarding likely 

behavioral consequences of DA manipulations and also of possible neural mechanisms 

involved in task learning and performance.  Probably the key novel prediction is that 

there exists at least one corticostriatal pathwayðprobably cingulo-ventral striatalðthat is 

involved in generation of exploratory behaviors, a pathway that allows the trial 

component of trial-and-error instrumental learning.  The model developed is capable of 

reversal as well as initial learning of a simple S-R task set.  Another key contribution of 

this research and the model is the emphasis that it places on the importance of separate 

anatomical DA neuromodulatory pathways.  It is an initial attempt to develop a 

neurocomputational model that recognizes an array of distinct pathway-dependent DA 

effects and fits them into a larger hypothesis of the function of centralized dopamine 

release.  It is a necessarily incomplete picture at this stage, but the author hopes a possible 

beginning to develop an integrative behavioral functional theory of one of the most 
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clinically important of neurotransmitters.  Additionally, the model may suggest some 

components of a general learning architecture for artificial intelligence, an architecture 

that is grounded in an animal learning and comparative neuroscience model. 

4.4 Limitations of the Model  

  

Given the scope of the model proposed in this dissertation, it is inevitable that 

there is a good deal that is incomplete or that may corroborate uneasily with recent data.  

This section will discuss limitations of the modeling of the actor, babble, and critic 

pathways, and finish with a discussion of general issues that apply to all three pathways.  

Some suggestion will be made of how future research might address some of these issues. 

τȢτȢρ Ȭ!ÃÔÏÒȭ 0ÁÔÈ×ÁÙ )ÓÓÕÅÓ 

 

Due to time limitations, less detail was modeled of the working memory 

apparatus than was originally planned.  One consequence of this is that the effects of 

hypo- and hyper-DA on working memory maintenance and updating are not modeled, 

though such effects would be significant.  Four ranges of mesocortical DA level were 

planned for modulating the effects of working memory: 

¶ No maintenance range: the lowest range of PFC DA level.  Working memory fails 

to retain its trace, disappearing after the afferent input vanishes.  Much evidence 

suggests that some level of tonic DA is necessary to stabilize recurrent excitation 

that allows working memory maintenance (Brunel & Wang, 2001; Durstewitz et 

al., 1999; Durstewitz et al., 2000; Gao et al., 2001). 

¶ Buffer maintenance range.  Above the no maintenance range, working memory 

remembers only the last-perceived input with new stimuli overwriting the old 
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traces, but without new inputs the old trace is maintained.  (Tanaka, 2002) models 

such a dynamic at an intermediate level of D1 activation. 

¶ Exclusive maintenance range.  Above the buffer maintenance range, working 

memory traces are resistant to disruption by new or otherwise distracting stimuli.  

This is the type of maintenance generally modeled in other research, e.g. 

(Durstewitz et al., 1999). 

¶ Overload disruption range.  Above the exclusive maintenance range, the high 

level of DA disrupts the existing working memory traces.  Rat studies have 

confirmed that too much D1 receptor activation disrupts working memory (Zahrt 

et al., 1997).  This is likely due to a potentiation of the GABAergic interneurons 

in the cortical columns (Brunel & Wang, 2001; Muly III, Szigeti, & Goldman-

Rakic, 1998). 

The working memory disruptions caused by sufficient hypo- and hyper-DA in the 

mesocortical pathway would cause additional failures of maintenance performance, 

though not necessarily unlearning of the task, once it has been acquired.  Naturally, 

acquisition of the task or reversal learning would be both difficult if working memory 

were not functioning correctly. 

 Not only DA modulation, but the actual circuitry of working memory was not 

modeled for lack of time.  Because of the need to maintain multiple working memory 

traces in certain tasks, there are likely to be multiple ñstripesò of PFC working memory 

whose maintenance and/or update may be independently gated through some type of 

dynamic gating mechanism involving the associative striatal pathways through the basal 

ganglia (Frank et al., 2001; O'Reilly & Frank, 2006).  The dynamic gating mechanism 
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presumably would be driven by the same reward/punisher learning as was developed in 

this model.  PFC modality representations would not be determined a priori, as they are 

in the dissertation model, but would be learned in a self-organizing fashion. 

 More recent data suggests that the dorsal striatal pathway actually has at least two 

distinct components: a dorsolateral path involved in habit-learning (Faure et al., 2005; 

Yin et al., 2004) and a dorsomedial pathway involved in goal-directed learning (Yin et 

al., 2005).  When an instrumental response is initially being learned, the goal-directed 

learning pathway seems to be involved; the evidence is that performance of the required 

behavior is contingent on the outcome reward maintaining its hedonic value (Yin et al., 

2005).  When a food outcome is devalued, either through satiation or through pairing of 

the food with a nausea-inducing substance, the animal ceases to perform responses that 

are still under goal-directed control.  Fixed-ratio reward schedules tend to yield continued 

goal-directed performance of the response.  Variable-ratio reward schedules, however, or 

overtraining, often lead to habit formation which is resistant to outcome devaluation.  The 

acquisition and performance of habitual S-R responses, then, is mediated by the 

dorsolateral habit-learning pathway.  By contrast, the model in this dissertation treats all 

S-R learning like habit-learning.  A more complex and realistic model needs to be 

developed exploring the dorsomedial goal-directed learning pathway and modeling how 

the goal-directed and habit-learning pathways interact, and also how these two pathways 

relate to the ventral striatal pathway/s involved in explorative behavior generation. 

 One notable lacuna in the model is the matter of task switching costs.  Typically, 

the RT for responses increases after a new task is signaled (Monsell, 2003; Rogers & 

Monsell, 1995; Wylie & Allport, 2000).  In the dissertation model, there is no latency for 
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task-switching, nor any interference effects between tasks.  In the full task-set, the switch 

between the BLUE-SELECT and RED-SELECT tasks entails no RT penalty or switch 

latency.  In order to bring such latencies into a model, one solution might be to require 

the dynamic gating mechanisms of working memory to be subject to a gating latency, in 

the same manner that Nod or Shake gating is in this model.  In that case, hypo-DA in the 

working memory dynamic gating striatal pathways could lead to slower update of which 

working memory ñstripesò are maintained, and hyper-DA could speed the switching.  The 

likely importance of DA in switching time is mentioned in (Cools, 2006). 

 One final potential discrepancy to mention in the óactorô pathway is the possibility 

that PFC plasticity may be LTD by default during Hebbian events and normal DA levels.  

Some of the literature suggests that LTD is the default response when cells are stimulated 

at high frequencies (Law-Tho et al., 1995).  The consequence of this would mean that 

Plan and Request units would tend to unlearn their representations unless they were 

rewarded.  It may be, however, that background neocortical extracellular DA levels under 

normal conditions, relieve this default LTD condition (Matsuda et al., 2006).  More 

investigation is needed. 

τȢτȢς Ȭ"ÁÂÂÌÅȭ 0ÁÔÈ×ÁÙ )ÓÓÕÅÓ 

 

Although DA affects the Babble Go and NoGo units of the model, there is an 

additional DA-ergic pathway likely to be involved in the óbabbleô pathway: the direct 

VTA connection to ACC.  In a rat experiment, both D1 and NMDA receptors need to be 

active in medial prefrontal cortex (which includes ACC) in order for appetitive 

instrumental learning to develop (Baldwin et al., 2002).  It may be that the disruptions to 

acquisition of task sets due to hypo-DA conditions may be more severe than what is seen 
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in Figure 3.22.  It may also be the case that the neural correspondent of the Frustration 

unit may require learning that is DA-dependent in order to correctly drive babbling. 

Another improvement that should be made to the óbabbleô pathway is to develop a 

way of utilizing memory in order to remember the last-tried responses.  The primate 

study of Procyk and colleagues (2000) suggests that the subjects remember previously 

tried responses and do not tend to erroneously retry them.  The hippocampusô connection 

with the ventral striatum and ACC makes this a plausible source of the memory, though 

PFC working memory could be another medium for traces of the tried responses. 

τȢτȢσ Ȭ#ÒÉÔÉÃȭ 0ÁÔÈ×ÁÙ )ÓÓÕÅÓ 

 

Another feature of the model that was planned, but not fully developed, was a 

more detailed ócriticô pathway.   Brown and colleagues (1999) developed a model of an 

adaptive critic which implements the dynamics of phasic bursts and dips.  (The 

conditions for DA bursts and dips were reviewed in Section 1.2.3.4.)  The critic used in 

the present model is non-adaptive and differs in its dynamics from the phasic activity 

dynamics seen in animal studies.  In the present model, there are unconditionally DA 

phasic bursts only during rewards and phasic dips only during punishers.  In a more 

realistic critic system, fully predicted rewards would not trigger phasic bursts, but omitted 

rewards would lead to phasic dips.  Moreover, stimulus cues that predict reward would 

lead also to phasic bursts.  Future work on this model should involve integrating a more 

realistic critic with the rest of the model, one capable of the learning of reward cues (S-O 

learning).  This would be a separate ventral striatal pathway from the óbabbleô pathway: 

another pathway subject to its own set of hypo- and hyper-DA effects.  Hypo-DA in this 

pathway would likely disable reward cue learning and possibly even lead to unlearning of 
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the cues.  Hyper-DA in this pathway would probably lead to spurious cue associations 

with reward. 

4.4.4 General Issues 

 

As was discussed in more detail in Section 1.2.3.5, modeling of the midbrain DA 

cells as a single compartment is probably an oversimplification.  The SNc and VTA 

compartments are likely to be functionally distinct, and there are also likely to be 

multiple VTA compartments.  How activity in these compartments (and their efferent 

pathways) is related would be a useful direction to explore.  Based on the literature 

review conducted by this author, it seems a likely hypothesis that there exists a hierarchy 

in the mesostriatal axis, with the nigrostriatal (SNc-to-dorsal striatum) pathways 

controlling the narrow responses of the organism to particular contexts, and the 

increasingly ventromedial portions of striatum innervated by VTA exerting a training, 

activating, and regulating influence over the more dorsolateral striatal pathways.  The 

habit-learning óactorô pathways are probably the most dorsolateral, followed by the 

dorsomedial goal-directed learning pathways.  Ventromedial to these would be the 

proposed óbabbleô pathway/s.   Ventromedial to these would be ventral striatal 

(accumbal) pathways involved in selection of goals.  Still further ventromedial would be 

pathways involved in Pavlovian (S-O) learning of the relation of stimulus cues to 

impending reward, as well as pathways involved in arousal of the more dorsolateral 

pathways in response to incentive cues.  It seems to this author that a proper global 

understanding of mammalian behavior control requires continued and increasingly 

detailed investigation into the basal ganglia apparatus and its relationship to the rest of 

the brain. The royal road to the (volitional) soul does indeed run through the striatum.  
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The brainstem, diencephalon (thalamus and hypothalamus), and neocortex all funnel 

information into the striatum, and the output nuclei of the basal ganglia send controlling 

connections back to the brainstem and (through the thalamus) to the neocortex.   This 

control system learns through reinforcement signals that are themselves under basal 

ganglia control.  Brainstem, diencephalon, and basal ganglia together constitute a flexible 

learning machine, which, however, lacks the memory mechanisms of the hippocampus, 

amygdala, and PFC, the complex sensory analytical processing of the posterior 

neocortex, and the high-level motor control of the frontal neocortex, including PFC.  

Cerebral cortex provides layers of refinement and flexibility (and possibly sentient 

awareness) to a core behavior system which is already flexible and adaptive. 

One avenue that was considered, but not fully developed, in this dissertation was 

an exploration of the effects of D1- and D2-specific agonists and antagonists.  The roles 

of D1 and D2 receptors even in the striatum are not fully understood, though, as Section 

1.2.3 shows, much has been already elucidated.  One complication that prevented the 

author from modeling D1 and D2 manipulation and collecting data for it is the biphasic 

nature of D2 receptor influence as DA levels increase  (Frank & O'Reilly, 2006).  At low 

DA extracellular levels in the striatum (and consequently at low dosages of D2 agonist 

delivery), D2 receptor activity primarily consists of the D2 autoreceptors on the DA cell 

terminals.  The autoreceptors inhibit DA release, so the behavioral and learning effects 

are primarily inhibitory.  However, at higher D2 agonist dosages, the postsynaptic D2 

cells in the NoGo striatal units become activated, and this effect is disinhibitory.  

Naturally, this complicates the behavioral effects of striatal D2 agonism and antagonism 

requiring distinctions be made between low and high dosages. 
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Another general limitation in the model is that extracellular DA levels are not 

adequately modeled at the respective DA targets.  The 6 DA effect variables are a 

beginning at modeling this, but what is missing is extrinsic and intrinsic modulation of 

the extracellular DA levels at the DA cell targets (Dreher & Burnod, 2002; Katz, 1998).  

It is not only the rate of DA cell firing that determines DA release, but glutamatergic 

activity around the DA cell terminals.  As an example of extrinsic modulation, PFC 

activity is believed to lead to larger striatal extracellular DA concentrations (Grace, 

1991).  As a (proposed) example of intrinsic modulation, PFC activity may locally 

stimulate VTA DA release into PFC (Chadderdon & Sporns, 2006; Dreher & Burnod, 

2002); this may provide a local control over working memory ñstripeò activation.  Thus, 

in addition to more global DA signaling, local control at DA terminals needs to be 

accounted for. 

Another factor that will ultimately need to be accounted for is the array of 

influences of other neurotransmitters on activity and plasticity at the DA targets.  

Serotonin, norepinephrine, and acetylcholine, and various neuropeptides all probably add 

additional influences to the discussed DA influences.  For example, in neocortex, 

acetylcholine is likely to be important in plasticity, as it has shown to be in bat auditory 

cortex (Ji & Suga, 2003) and human motor cortex (Kuo, Grosch, Fregni, Paulus, & 

Nitsche, 2007).  How acetylcholine and DA interact in control of cortical plasticity is 

something that ought to be investigated in the future. 

4.5 Future Research 

 

This dissertation has developed a complex neurocomputational model which has 

attempted to begin to explain the division of labor of cortical, basal ganglia, and midbrain 
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areas involved in task learning and execution.  Due to the limitations mentioned in the 

previous section, as well as yet unknown factors, it is essentially a work in progress.  The 

most important immediate next steps that should be taken with the model involve 

incorporating known pathways and neural mechanisms that are currently not modeled. 

Most important is incorporating the adaptive critic mechanisms that were modeled 

in (Brown et al., 1999).  This would allow the model to predict rewards and respond 

according to observed reward- and punisher-related phasic DA dynamics (Schultz, 1998; 

Ungless et al., 2004).  Whereas punishers are currently needed to trigger reversal learning 

in this model, a properly functioning adaptive critic would cause reward omissions to 

lead to phasic dips and, therefore, extinction of behaviors.  Fully predicted rewards would 

also cease to trigger phasic bursts.  Cues predicting rewards would also trigger phasic 

bursts which, in turn, could lead to learning of behavior sequences through backwards 

chaining.  Hypo- and hyper-DA effects in the ventral striatal pathway involved in the S-O 

learning for reward prediction would need to be analyzed. 

The next area of improvement in the model would involve modeling DAôs effect 

on working memory as mentioned in Section 4.4.1.  First, it might be useful to keep the 

simple mechanisms of WM currently used, but apply the 4-range modulation mechanism 

explained in 4.4.1.  At a later stage, however, the mechanisms for the dynamic gating of 

the working memory traces need to be developed.  It seems that there could be at least 

two (associative) striatal pathways (or sets of pathways) involved in working memory: a 

pathway which provides the base-level of DA to the recurrent excitatory circuits that 

maintain the working memory traces, and another pathway that is involved in switching 

on and off the maintenance of the working memory ñstripesò, perhaps by boosting DA 
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release at VTA terminals locally in PFC.  Much effort will probably need to be devoted 

to development of a dynamic gating mechanism that works with the rest of the model, 

though the work would probably build on the mechanisms developed in (O'Reilly & 

Frank, 2006).  Hypo- and hyper-DAôs effect on these pathways will need to be 

investigated. 

Modeling of D1 and D2 agonism and antagonism is probably the next most 

important modification to make.  If done correctly, it would allow the model to be useful 

in making predictions about DA receptor-specific drugs and their effects on TOBS.  

Effectively modeling the biphasic effects of D2 receptors (mentioned in Section 4.4.4) 

would be an important step in investigating D1 and D2 agonism/antagonism. 

More investigation also needs to be made into the details of the óbabbleô pathway.  

DA modulation of ACC needs to be modeled.  More work also needs to be done on the 

learning dynamics of explorative behavior generation.  It is likely that this system needs 

to learn to respond to particular incentive cues, and may need to later unlearn this 

(babbling) response once adaptive specific S-R mappings have been learned.  The ability 

of animals to remember last-tried responses suggests that some mechanism needs to also 

be developed that lets the óbabbleô pathway take account of previous tries so that it can 

avoid repeating them. 

Finally, it would be useful to begin to model the distinct dorsal striatal pathways: 

i.e., the dorsolateral habit-learning and dorsomedial goal-directed learning pathways.  In 

addition to evidence already cited about these pathways, there is also some evidence that 

DA level may shift the balance between habitual and non-habitual behavior by affecting 

the relative activity in the striosomal vs. the matrisomal striatal cells (Nelson & Killcross, 
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2006).  High DA may lead to an emphasis of striosomal cell activity which is believed to 

be more involved in habitual actions.  No doubt, more information will continue to arrive 

on basal ganglia function that will allow more detailed and representative models of 

TOBS-related striatal pathways to be constructed. 

In addition to making continual refinements of the model developed here and the 

associated comparative neuroscientific theory, it may be useful to apply this theory in 

other ways.  Especially promising may be the possibility of embodying the model in a 

learning robot.  It is hoped that the model developed hereðand successive versions that 

might be developed from itðcould constitute the nucleus of a machine learning 

architecture that would allow the development of robots and virtual automata that are 

capable of general task-learning.  
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Table 1.1 Abbreviations used in the dissertation.   

 

5-HT Serotonin 

ACC Anterior cingulate cortex 

ADHD Attention deficit hyperactivity disorder 

AI  Artificial intelligence 

BA Brodmann area 

BG Basal ganglia 

CR Conditioned response 

CS Conditioned stimulus 

DA Dopamine 

DAT Dopamine transporter 

ERN Error-related negativity 

FEF Frontal eye fields (lateral BA 8) 

FPC Frontopolar cortex (BA 10) 

GPi Globus pallidus internal segment 

GPe Globus pallidus external segment 

IT Inferotemporal cortex 

kWTA k winners-take-all 

LDT Laterodorsal tegmental nucleus 

LTD Long-term depression 

LTP Long-term potentiation 

M1 Primary motor cortex 

NAc Nucleus accumbens 

NE Norephinephrine (noradrenaline) 

O Outcome 

OFC Orbitofrontal cortex 

PD Parkinsonôs disease 

PFC Prefrontal cortex (dl = dorsolateral, etc.) 

PMC Premotor cortex (lateral BA 6) 

PPC Posterior parietal cortex 

PPN Pendunculopontine (tegmental) nucleus 

R Response 

RT Reaction (response) time 

S Stimulus 

S
D
 Discriminative stimulus 

SEF Supplementary eye fields (medial BA 8) 

SMA Supplementary motor area (medial BA 6) 

SNc Substantia nigra pars compacta 

SNr Substantia nigra pars reticulata 

STN Subthalamic nucleus 

TOBS Task-oriented behavior selection 

UR Unconditioned response 

US Unconditioned stimulus 

VTA Ventral tegmental area 
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Table 2.1 Simulation movies available online.   

 

 

Movie URL/s 

2.1 Full task set training phase 

performance 

http://gchadder3.com/dissmovies/mov2s1.wmv    

     (compressed: ~ 700 K) 

http://gchadder3.com/dissmovies/mov2s1best.wmv      

     (uncompressed: ~ 4.3 M) 

2.2 Full task set reversal phase 

performance 

http://gchadder3.com/dissmovies/mov2s2.wmv  

2.3 Neural noise generation 

mechanism performance 

http://gchadder3.com/dissmovies/mov2s3.wmv  

2.4 Full task set babble activation 

during Eb/Red -> Nod learning 

http://gchadder3.com/dissmovies/mov2s4.wmv  

2.5 Example of conjunction 

learning: C/Red -> Shake 

http://gchadder3.com/dissmovies/mov2s5.wmv  

2.6 C/Red -> Shake learning: Plan 

unit weight modification 

http://gchadder3.com/dissmovies/mov2s6.wmv  

2.7 C/Red -> Shake learning: Shake 

Go unit weight modification 

http://gchadder3.com/dissmovies/mov2s7.wmv  

2.8 Example of conjunction 

relearning: C/Blue -> (Nod to 

Shake) 

http://gchadder3.com/dissmovies/mov2s8.wmv  

2.9 C/Blue -> (Nod to Shake) 

relearning: Plan unit weight 

modification 

http://gchadder3.com/dissmovies/mov2s9.wmv  

3.1 Example of accidental 

conjunction overwriting 

http://gchadder3.com/dissmovies/mov3s1.wmv  

3.2 Example of novelty driven 

learning: Plan unit weight 

modification 

http://gchadder3.com/dissmovies/mov3s2.wmv  

 

  

http://gchadder3.com/dissmovies/mov2s1.wmv
http://gchadder3.com/dissmovies/mov2s1best.wmv
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http://gchadder3.com/dissmovies/mov3s2.wmv
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Table 3.1 Full task set training simulation phase run summary.   

 

 

Run # Iteration #ôs Trial #ôs Events 

1 1-1000 1-15 Training on C/Blue->Nod; learned successfully 

2 1001-2000 16-30 Training on C/Red->Shake; not learned 

3 2001-3000 31-44 Training on C/Red->Shake; learned successfully 

4 3001-4000 45-59 Training on Eb/Red->Nod; learned successfully 

5 4001-5000 60-74 Training on Eb/Blue->Shake; learned successfully 

6 5001-6000 75-88 Testing on all conjunctions; C/Blue->Nod, C/Red      

->Shake not working 

7 6001-7000 89-103 Training on C/Blue->Nod; not learned 

8 7001-8000 104-118 Training on C/Blue->Nod; learned successfully 

9 8001-9000 119-133 Training on C/Red->Shake; not learned 

10 9001-10000 134-148 Training on C/Red->Shake; learned successfully 

11 10001-11000 149-163 Testing on all conjunctions; Eb/Red->Nod not 

working 

12 11001-12000 164-178 Training on Eb/Red->Nod; not learned 

13 12001-13000 179-192 Training on Eb/Red->Nod; learned successfully 

14 13001-14000 193-206 Testing on all conjunctions; all working 

15 14001-15000 207-221 Testing on all conjunctions; all working 
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Table 3.2 Full task set maintenance simulation phase run summary.   

 

 

Run # Iteration #ôs Trial #ôs Events 

1 1-1000 1-15 12 Hits, 3 Misses 

2 1001-2000 16-29 14 Hits 

3 2001-3000 30-44 10 Hits, 5 Misses 

4 3001-4000 45-59 9 Hits, 6 Misses 

5 4001-5000 60-73 9 Hits, 5 Misses 
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Table 3.3 Full task set reversal simulation phase run summary.   

 

 

Run # Iteration #ôs Trial #ôs Events 

1 1-1000 1-15 Training on C/Blue->Shake; learned successfully 

2 1001-2000 16-29 Training on C/Red->Nod; learned successfully 

3 2001-3000 30-44 Training on Eb/Red->Shake; learned successfully 

4 3001-4000 45-57 Training on Eb/Blue->Nod; not learned 

5 4001-5000 58-72 Training on Eb/Blue->Nod; learned successfully 

6 5001-6000 73-87 Testing on all conjunctions; all working 

7 6001-7000 88-102 Testing on all conjunctions; all working 
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Table 4.1 Summary of DA manipulation results discussed in Section 3.2.  Action speed 

(in an inverse way) was measured by RT (see Figure 3.11).  Behavior initiation was 

measured (inversely) by the percent of missed responses (see Figure 3.17).  Task 

acquisition was measured by the percent of ósubjectsô that learned the initial C AND Blue  

-> Nod task (see Figure 3.22).  Task learning maintenance was measured by the percent 

of ósubjectsô that maintained learning of the initial task (see Figure 3.29).  Task reversal 

learning was measured by the percent of ósubjectsô that learned the new C AND Blue -> 

Shake task (see Figure 3.34).  Each table entry represents a test that could be performed 

on animal subjects, and results the model would predict.  ds = dorsal striatal hypo-DA; vs 

= ventral striatal hypo-DA; nc = neocortical hypo-DA; g = global hypo-DA; DS = dorsal 

striatal hyper-DA; VS = ventral striatal hyper-DA; NC = neocortical hyper-DA; G = 

global hyper-DA. 

 

 

DA Manipulation Effect  ds vs nc g DS VS NC G 

Action Speed Ź 0 Ź1 Ź ŷ 0 0 ŷ 

Behavior Initiation Ź 0 Ź1 Ź 0 0 0 0 

Task Acquisition Ź Ź2 X1 X1 0 0 Ź Ź 

Task Learning Maintenance Ź1 0 X1 X1 0 0 0 0 

Task Reversal Learning Ź1 Ź2 X1 X1 0 0 Ź Ź 

 

 

ŷ = increase of effect 

0 = no change of effect 

Ź = decrease of effect 

X = complete disruption 

1 = only effective at the most extreme 2 hypo-DA conditions 

2 = effect is relatively minor 
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Figure 1.1 Human Brodmann areas.  Figure downloaded from 

http://spot.colorado.edu/~dubin/talks/brodmann/brodmann.html. 

http://spot.colorado.edu/~dubin/talks/brodmann/brodmann.html
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Figure 1.2 Prefrontal cortex and its afferent and efferent connections.  Taken from Figure 

1 of (Miller & Cohen, 2001). 
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Figure 1.3 Location and components of the basal ganglia.  Adapted from 

www.stanford.edu/.../braintut/f_ab18bslgang.gif.  Areas with non-italicized labels are 

considered components of the basal ganglia.  The caudate nucleus and putamen together 

form the striatum. 

 

http://www.stanford.edu/.../braintut/f_ab18bslgang.gif
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Figure 1.4 Basal ganglia anatomical circuit.  Adapted from Figures 1 and 5 of (Gurney, 

Prescott, & Redgrave, 2001).  (a) Internal BG pathways.  (b) External BG pathways.  (c) 

Functional architecture.  The D1 striatal pathway is a óGoô pathway because it inhibits the 

BG output which is itself inhibitory.  The D2 striatal pathway (striatum-GPe-GPi/SNr) is 

a óNoGoô pathway because it disinhibits the BG output leading to inhibited thalamic, etc., 

activity.  The main STN pathway (STN-GPi/SNr) also has an inhibitory effect on 

behavior. 

 

 

  

(c) 
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Figure 1.5 Typical anatomical division of the striatum for a rat.  Taken from Figure 1 of 

(Voorn, Vanderschuren, Groenewegen, Robbins, & Pennartz, 2001).  The boundary 

between the dorsal and ventral striatum is typically drawn at the upper dotted line.  CPu = 

caudate-putamen; Acb = nucleus accumbens; OT = olfactory tubercle; ac = anterior 

commisure. 
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Figure 1.6 Anatomical map of striatum and associated cortical and subcortical 

connections in a rat.  Taken from Figure 3 of (Voorn, Vanderschuren, Groenewegen, 

Robbins, & Pennartz, 2001).  A gradient from dorsolateral to ventromedial according to 

connectivity is noticeable.  Motor areas tend to be innervated by more dorsolateral 

regions of striatum, whereas associative and limbic regions are innervated more by 

ventromedial regions.  ACd = dorsal anterior cingulate cortex; IL = infralimbic cortex; 

PLd = dorsal prelimbic cortex; PLv = ventral prelimbic cortex; SMC = sensorimotor 

cortex.  Note that ACd, PLd, PLv, and IL are regions of ACC/medial PFC, and are 

innervated by more ventral striatal regions. 
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Figure 1.7 Major afferent and efferent pathways of the ventral tegmental area (VTA).  

Taken from Figure 1 of (Fields et al., 2007).  Colored arrows show the percentage of 

DAergic neurons in the efferent pathways.  (VTA also has GABA- and glutamatergic 

influences.)  LDT = laterodorsal tegmental nucleus; LH = lateral hypothalamus; PPTg = 

pedunculopontine tegmental nucleus; SC = superior colliculus; VP = ventral pallidum. 
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Figure 1.8 Response of DA neurons to reward conditions.  Taken from Figure 2 of 

(Schultz, 1998).  (top) DA cells react to unexpected, unpredicted rewards at the time of 

reward.  (middle) When a reward is reliably predicted by a conditioned stimulus, the DA 

cells burst during the CS, but not during the reward it predicts.  (bottom) However, when 

a reward is predicted, but not delivered, there is a burst at the CS, but a dip at the time 

that the reward was supposed to be delivered. 
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Figure 1.9 Uncertainty-related DA cell firing in response to reward-predictive CSs.  

Taken from Figure 2 of (Fiorillo et al., 2003).  (a) Single cell rasters and histograms of 

firing related to the probability (p) that a reward is delivered (in Pavolvian fashion) after 

a cue.  E.g. p = 0.75 means a reward is delivered ¾ of the time.  (b) Cell population 

histograms observed under different probability conditions. 
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Figure 1.10 Summary of neurotransmitter control of corticostriatal long-term 

potentiation and depression (LTP and LTD) in Go and NoGo striatal units.  Taken from 

Figures 1 and 2 of (Shen et al., 2008).  (top) Go unit (direct pathway) plasticity control.  

Low DA would be expected to disrupt LTP through hypo-D1 activation. (bottom) NoGo 

unit (indirect pathway) plasticity control.  Low DA would be expected to disrupt LTD 

through hypo-D2 activation.  A2a = adenosine 2A receptor; bAP = backpropogating 

action potentials; Cav 1.3 = a type of L-type calcium channel; EC = endocannabinoid; 

Glu = glutamate; mGluR = metabotropic glutamate receptor. 
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Figure 2.1 Modeled organism and environment.  The organismôs ñbodyò is a pan-tilt 

camera moving through a visual (128x128 pixel) ñarenaò.  Three behavior commands 

driving the organismôs motor control module, Track, Nod, and Shake, allow the organism 

to track colored stimuli, and make accepting and rejecting responses, respectively, for 

which the organism may be rewarded for correct and punished for incorrect answers.  

The cognitive processing module takes visual retina, auditory tone, visceral state 

(hunger/frustration), and reward (food) and punisher (shock) signals and selects the 

appropriate behavior command.  By default, the organism tracks colored squares, placing 

its (16x16 pixel) color-sensitive fovea over the object.  Based on the viewed color of the 

stimulus and the last remembered auditory tone, the organism is supposed to either Nod 

or Shake.  The modeled organism is capable of learning and relearning mappings of color 

and tone context to response behavior through operant conditioning using both rewards 

and punishers. 
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Figure 2.2 Testing stimulation run showing trained full task performance.  Tone 

(Blue=C, Red=Eb) and colored square presentation (Blue, Red), model behavior 

(Green=Nod, Red=Shake), errors committed (Green=Correct, Black=Miss), and 

reinforcement delivery (Green=Reward) are shown over all iterations of the 1,000 

iteration run.  All conjunctions of the task are shown to have been learned  

(C AND Blue->Nod, C AND Red->Shake, Eb AND Red->Nod, Eb AND Blue->Shake) 

although there are a couple of missed responses. 
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Figure 2.3 Testing stimulation run showing reversal full task performance.  Tone 

(Blue=C, Red=Eb) and colored square presentation (Blue, Red), model behavior 

(Green=Nod, Red=Shake), errors committed (Green=Correct, Black=Miss, Blue = 

Repeat), and reinforcement delivery (Green=Reward) are shown over all iterations of the 

1,000 iteration run.  All conjunctions of the reversal task are shown to have been learned  

(C AND Blue->Shake, C AND Red->Nod, Eb AND Red->Shake, Eb AND Blue->Nod) 

although there are a couple of missed responses and a repeated Shake. 

 
  


