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George L. Chadderddh

A NEUROCOMPUTATIONAL MODEL OF THE FUNCTIONAL ROLE OF
DOPAMINE IN STIMULUS-RESPONSE TASK LEARNING AND PERFORMANCE
The neuromodulatory neurotransmitter dopamine (DA) plays a complex, but central role
in the learning and performance of stimutesponse () behaviors. Studies have
I mpl i cat ed D Adrigen leaoningand atso its eole e setting the overall
level of vigor or frequency of response. Here, a neurocomputational model is developed
which model s DAOGs i nf | ué&emed®besinvolved irsttet of br
learning and execution ofB tasks, including frontal cortex, basal ganglia, and cingulate
cortex An Oactor 6 c o mpsdaraiedus ionfg tdhbea broldeed (r and
selection) and 6cr i {)domponerftsobtheanoded parprma nd p un
acceptance/rejection responses upon presentation of color stimuli in the context of
recently presented auditory toneBhe model behaves like an autonomous organism
|l earning (and r ednderrrndhafgcys otthstudy,uhg mpagttofr i a |
hypo- and hypemormal DA activity on tis model, is investigated by three different
dopaminergic pathwagstwo striatal and one prefrontal cortidabeing manipulated
independently during the learning and performaofdde color response task. HypA
conditions, analogous to Parkinsonism, cause slowing and reduction of frequency of
learned responses, and, at extremes, degrade the learning (either initial or reversal) of the
task. HypetDA conditions, analogous tespchostimulant effects, cause more rapid
response times, but also can lead to perseveration of incorrect learning of response on the
task. The presence of these effects often depends on whigndi®pathway is

manipulated, however, which has implicagdor interpretation of the pharmacological



experimental data. The proposed model embodies an integrative theory of dopamine
function which suggests that the base rate of DA cell activity encodes the overall
6actdrviidgdrnyt ed mot i v a twithdumn@er and/or éxpeetatian ofgeavard s m,
driving both response vigor and tendency t
This more 6tonicé feature of DA functional
extensivelys t udi ed 0 pleaenimg fatdres.r Tehevraodedl may provide better

insights on the role of DA system dysfunction in the cognitive and motivational

symptoms of disorders such as Parkinsonism, psychostimulant abuse, ADHD, OCD, and

schizophrenia, accounting for deficits in both learrang performance of tasks
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Chapter 1: Motivation and Background
1.1 Summary of Investigation
1.1.1 TaskOriented Behavior Selectionand Volition
Production of behavior that meets survival and reproductive needs of the
organism is the fundamental goal of all animal cogniti@mnganisms in their
environments seek to engage in behaviors which lead to rewards (e.g. food, drink,
mating) and avoid punishments (e.g. pain, injury). PostiiteomegO; all
abbreviations listed in Table 1.1) are often contingent on making a coespans€R)
to particularstimulus(S) cues in the environmenthe essential problem @blition/
executive contralk how to mostadaptivelyy meaning most advantageously for the
organisnd selectanR r om t he ani mal 6s e mehaviore. repert oi
I n addition to i mmediate S cues, howeve
depend on the current internal state of the organism: its bodily state or the goal it is
currently trying to accomplish (e.g. ndsiilding, hunting, fleeing from predors). The
selection of an appropriate behavior in th
and internal state is the essencaddptive decisiommaking In previous worK2008)
t he aut horvoltoabs adse fritnheed coapaci-mgkifogo adma@gt i v
suggestd that this capacity is possessed in varying degrees by organisms. Increasing
volition means an increasing flexibility of (and internalization of) control of behaviors.
In (Chadderdon, 2008)he author presents an ordinal scale intended to measure
volition in organisms (either natural or artiit). Levels of this scale are characterized
by the degree of flexibility of control the organism/system has. At a low level of volition

are systems t hwatr eldav e ednrleyx fbleahradvi or s . Sys



from experience, however, pess a higher degree of volition. Associative learning
allows learning of new adaptive behavior patterns and also the informational structure of
the environment. Possession of working memory (as will be discussed in more detail)
confers still more flexibity, as does the faculty of lorgrm memory. The ability to
deliberate on candidate Rs and contemplate their likely Os before committing to an action
Is a feature that adds significant volitional capability to an organism. Finally,
environmental bootstpping including social behavior, object manipulation, symbolic
communication, and external storage of symbadlows still higher levels of volition.

Even within the same organism, however, behaviors may be subject to varying
|l evel s of clamivirioédo Si-rmgdnses(®)irafiaxdsusisch as
spinal pain limbwithdrawal reflexes, or swallow responses, represent a low level of
volitional control, behavior control through collections of instinctual tropisms.
Associative learning, howereallows a higher level of volitional control because it
allows learning of novel ® mappi ngs attuned to the condi!f
environment. The inherent plasticity of neurons endows even evolutionarily primitive
animals such as sedugs withsome degree of-R learning capacity.

The abilityto learnnew® mappings i s an i mportant coc
ability to adapt to its environmentlowever, there are complicating factors in how the
world may distribute rewards that may makepe SR learning insufficient. First, an S
cuethat prompts an appropriamay be transient. For exampéepredator may spot a
prey animal only to have it disappear into hiding nearby. It would be highly maladaptive

for the predator to forget aboutktlexistence of the prey animal, and would be more



adaptive to engage some kind of searching or tracking behavior, at very least searching
where the quarry was last seen.

Another possible complication is that there may be a maimyany mapping
between pdicular S cues and mosadaptiveRs When seeing a prowling hyena, a
mo n k e y éssapdRnasy depend on whether there are trees around or whether they
are out in the open. The most adap®given theimmediate Swill dependon other
cues sometims calleddiscriminative stimul{S’s): the location of the monkey in the
previous exampleIn a more difficult case, these cues may themselves be trarsent
when the vocalization of a predator is heafidthese types aespondingequire some
kind of internal representation to be formed and held active during the time after critical
environmentatues have disappeared. These are the kinds of reinforcement conditions in
the environment that likely create the selective pressure for the developregit of
oriented behavior selectiqfTOBS).

We may imagine an experiment in which a rat learns a simplerapping in
which foodpellets are always delivered after it presses a lever (R) in response to the
onset of a light (S). However, we could imagine makimgreward contingency more
complex by adding two auditory tones (high vs. low) which change whether the rat is
administered a foegellet (reward), or a footshock (punisher) in response to its lever
press at the onset of the light. The tones are plagbdeen blocks of light/lever trials to
signal changes in reward contingency state in the environment. These tones may be
thought of as signaling for the rat two distitasks PRESSLEVER-ON-LIGHT, or
AVOID-LEVER-ON-LIGHT. Some form of what has beerlled working memory

(Baddeley, 2003is required for the rat to maintain a representation of the current reward



contingency state of the environment. The selection of a behavior contingent on a current
task is what is meant by TS (Chadderdon & Sporns, 2006yVorking memory may
also be used to temporarily stdesk parametersncluding information specifying
subgoals, stimulus targets, or specific means or manner of performingkthe tas

If we consider the kinds of loagainge behaviors humans engage in, we see that
TOBS is a critical component in adaptation to civilizatidiar example, Wwen we are in
our cars, we need to have some kind of representation of our intended destirgttiva, le
end up somewhere else by default. When engaged in a sequential task such as adding
t wo numbers together in our heads, we need
completed as well as the final go&@enerally, humans are gealiented creatureshose
environment requires the kind of behavior involving the engaging and disengaging of
task states that override default behavior.

A laboratory example of TOBS in humans which illustrates the problem of-many
to-many Sto-bestR mappings is the Stroopdk in which the subject is instructed to
either read the text of words presented in colored ink or the color of the ink instead
(Stroop, 1935) I f the word 6éblued is written in |
depend on which task (REARVORD vs. READCOLOR) is active. Clearly, the
READ-WORD task is more of a defauisk and must be overridden in order for correct
responses to be made, a fact which causes errors and slower performance of the READ
COLOR task when its answers conflict with those of REVWIDRD. The ability to use
internally maintained task context taelit behavior represents an increase in behavior

flexibility over fixed SR mapping. Failure of the working memory system that would



allow task/ goal represent-édtivendwolnéldaviesul

has been observed in patients viitmntallobe damagéMiller, 2000).

1.1.2 Reinforcement Learning

Seeing that TOBS is an important feature of animal behavior, we may wonder
how an organism learrike particular SR mappings for each task and the discriminative
stimulus cues (%) that signal switching to/between the tasks. Animals can be trained to
perform behaviors through conditioning procedur€tassical (Pavlovian) conditioning
proceduregRescorla, 1988aditionally involved learning to associate a presiy
neutral stimulus, aonditiored stimulus(CS) with another stimulus, thenconditioned
stimulus(US) which tends to produce a correspondingonditioned respong&R).
Through this association, the CS is able to triggewralitioned respong€R). More
recent conceptualizations of Pavlovian learr(iRgscorla, 1988, 199tharacterize it as
stimulusoutcome (S0) learning whereby an association is learned between one event
(the S) and a subsequent event (the O) that it predicts/precedes. Presumably, it is the O
that drives the conditioned R, though some stimulus context may determine the exact
nature of the R. For example, a dog in the classic Pavlov experiment is learning to map a
bell (S) to an expectation of food (O) which leads to salivation (R).

When the O does not automatically follow the S, however, but is contingent on a
particular Rtheninstrumental (operant) conditionin@rRescorla, 1991procedures are
used to train the subject. For example, a rat may be required to press a lever (R) in order
to receive a foogbellet reward (O). Essentially, instrumental learning invohedsery
(or omission) of rewarding and/ or punishin

R (Thorndike, 1911)potentially in some environmental context (S). The basic pattern is



as follows. First, the subject engages spomasky in a behavior (R) during a particular
environmental context (S). Then, the rewarding or punishing consequences (O) of that
action are relayed to the subject. According the Law of Effdwbrndike, 1911)if a
reward (punisheris delivered, then the likelihood of the subject choosing that particular
behavior in a similar environmental context is increased (decreased). So the subject
learns to choose Rs that maximize reward and minimize punishment. Sutton and Barto
(1998)have characterize@inforcement learninga theorécal abstraction of animal
i nstrument al | e ar ni dodghow ta map sitiatidnetaactimhso g wh a't
as to maximize a numerical reward signal

Instrumental learning has been theorized to involve learning of a hierarchical S
(R-O) mapping(Rescorla, 1991)out this dissertation investigates the neural mechanisms
that might underlie the (conceptually more traditional) theory-Bf @appings being
trained by the Os. There is evidence, in fact, that some behaviors (though not as many as
was originally believed) are cast as direeRSnappings, rather, that are independent of
any immediate outcome expectarfsyrsch, Lynn, Vigorito, & Miller, 2004). These
behaviors ar@abitual and resistant textinction(unlearning caused by omission of
rewards). Thus, the model to be offered in this dissertation may be considered a
preliminary model of habitearning, albeit habit learning that relies on working memory
traces to keep track of a task state.

It is proposed ére that both fixed &R mappings and more contedképendent
mappings, such as would be required for TOBS, may be learned via the same learning
mechanisms. In essence, the main stimulus (S) and the task coRjexagShe

considered a conjunctive stimulysSNj)) such t hat each stimul us:/



be mapped to an R. A neurocomputational model has been constructed that models the
learning (and unlearning) of TOBSFESmappings. Rewards and punishers, respectively,
allow learning and unlearning sfimulus/context conjunctieto-response mappings, but

effects of extinction (omission of reward) are not modeled.

1.1.3Dopamine
Neuromodulatory neurotransmitters such as dopamine (DA) provide a global
mechanism by which networland systertevel neurbdynamics can be altered.
(Marder & Thirumalai, 2002¢ontains a broad discussion of the effects of
neuromodulators on the intrinsic firing properties and the synapticqitgstf neurons.
Neuromodulators adjust the maximum conductances for particular ion channels in cells
which can, for example, convert them from tonically inactive cells that require afferent
input to tonically active cells or bursting cells. Synaptiersgth can also be affected by
either pre or postsynaptic effects of neuromodulator release. Multiple neuromodulators
can interact with one another leading to hargbredict results. Overall, the
computational consequences of neuromodulator effectzesrderingly variable and
the effects of the individual transmitters are in principle not easily disentangled.
However, there do seem to be certain lesgale functions associated with DA in
mammalian brains. DA is a critical component in the cirgutlowing voluntary
behavior, as is evidenced bdwhobubBer@A f f i cult
depletion due to death of dopaminergic cells in midbrain nudiive initiating and
rapidly executing movemen(S&auntett-Gilbert & Brown, 1998; Muller et al., 1999;
Schultz et al., 1989)There is evidence that heightened levels of DA, such as may be

caused by psychostimulant (e.g. cocaine or amphetamine) use, may lead to both shorter



reaction timegHalliday et al., 1994; Hienz, Spear, & Bowers, 1984)l a greater degree
of explorative activityCarr & White, 1987; Ikemoto & Panksepp, 1999)A activity is
involved with working memory maintenan{@urstewitz, Seamans, & Sejnowski, 2000;
Sawaguchi & GoldmaiRakic, 1994; Zahrt, Taylor, Mathew, & Arnsten, 199bich is
a critical component of executive control. Finally, DA seems to play a significant role in
reinforcement learning as is evidenced both blutelstudies of how DA modulates
synaptic plasticitf{Reynolds & Wickens, 2002; Shen, Flajolet, Greengar@udmeier,
2008)and by the conditions which prompt DA cell firing. Studies suggest that DA cells
tend to fire in response to novelty and the unexpected delivery of rewards, but their firing
tends to be suppressed by omission of expected rewards astvegtimuli(Schultz,
1998, 2007; Ungless, Magill, & Bolam, 2004More details about the likely neural
mechanisms underlying many of these effects will be discussed in Section 1.2.3.

Caution is warranted when attempting to generalize about the function of any
particular rurotransmitter such as DA, but it may be illuminating to try to integrate what
is understood about the disparate functions DA is involved in and what is known about
the circuitry the DA cells are a part of. Certain generalizations can and have been made
about neurotransmitter functions which add greatly to our intuitions about their likely
roles in the brain. For example, catecholamines such as norepinephrine (NE) and DA
seem to be involved in arousal, whereas indoleamines such as serofdiing&ema,
generally speaking, inhibit or modulate the effects of arqisaiksepp, 1986, 1998)

One of the larger aims of this dissertation is to attempt to make such a
generalization about the function of DA: naly) it proposes thdDA cell baserate

activity correlates wi tori@mtaerdg avoitd mé@d i ownrd



thistonic signal is superimposed@hasicreinforcement signal wherein large bursts of
activity, relative to the baseline firingignal associative learning through rewa(ar
novelty);and significant dips of activity signal associative unlearning through
punishment The superposition of these signals has certain implications for predictions
we might make about the effects ohabmal levels of DA and their effects on cognitive
and executive function.

Chapter 8 of AffectizelNeuPsciernd®anksgp@ $99&uggests a
precedent for such a unified understanding of the role of DA. Panksepp proposes that
DA is the key neurotransmitter involved in the activation of a SEEKING affective
system, i.e., an appetitive motivational emotional circuit involved in a generalized
energizing of explorative and foraging behavior. The lateral hypothalamus (LH) signals
physiological needs such as hunger or thirst, and these trigger activation oflDiA cel
the ventral tegmental area (VTA), one of the important midbrain DA nuclei. VTA
activity targets areas such the ventral striatum (nucleus accumbens) and this leads to an
increase in explorative behaviors, such as sniffing and forward locomotias.in ra
Activation of this circuit is believed to be associated with a subjective experience of
anticipatory excitement, rather than hedonic pleasure that would be associated with
consumption/consummation. Physiological needs, such as hunger, may adsvate th
system, but it is also possible for the system to learn to activate in response to initially
neutral stimulus cues, e.g. a tone preceding feeding. -&rawjngs in humans may work
via such a mechanism with particular environmental cues such as thefgghguse
paraphernalia potentially triggering the activation of this expectancy/anticipatory

emotional state, even after physical withdrawal has been ovel¢tynean & Malenka,



2001) The SEEKING system activation is ndrive-specific: hunger, thirst, and sexual
desire all triggerite same system, and it has been observed that activation through one
drive (e.g. hunger) can lead to increased consummatory behaviors related to other drives
(e.g. thirst).

While the other major dopaminergic pathway to the basal ganglia, the substantia
nigra-to-dorsal striatal pathway (to be discussed later) is not active in exactly the same
circumstances as the ventral striatal pathway, the evidence regarding effects of
Parkinsonds suggests that DA facildasates m
depletion of the ventral striatal pathway leads to decreased exploratory be&Haariuto
& Panksepp, 1999epletion of dorsal striatal pathway leads to decreased performance
of more stimulusspecific learned behavio(Packard & Knowlton, 2002; Yin, Knowlton,

& Balleine, 2004) Inboth cases, bagate of DA cell activity seems to correlate with a
drive to be active, rather than inactive. Itis as if thedoaseof DA cell activity signals

the overall need of the organism to engage in purposive, voluntary behavior rather than
remaining quiescent. Under this assumption, low dopamine should correlate with states
of both affective and psychomotor sluggishness, whereas high DA states correlate with
heightened subjective sense of excibed exp
and with physical hyperactivity. The phasic learning signals, then, allow behaviors (Rs)
to be associated with cues (Ss) that lead to positive outcomes (Os), and alseRillow S
mappings that lead to negative Os to be unlearned. Thus, the same DRatadlsergize

the organism for voluntary action provide a reinforcement learning signal for training the
organism to perform those actions. An interesting implication is that in the energized

state there is a bias towvaorwhs rsavwaared tlheearen
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towards punishment learning, a proposition that has been made by Frank and colleagues
in their modeling[Frank & O'Reilly, 2006; Frank, Seeberger, & O'Reilly, 2004)

The model developed in this research attempts to formulate a preliminary
under st andi ng oreinfatcemeatiearning arsl execotioreof TOBS. Of
particular interest are the effects of too little or too much dopamine activity in the neural
substrates of TOBS. More details of the mechanisms of dopamine are discussed in

Section 1.2.3, and wider impations of the theory are discussed in Section 4.1.4.

1.1.4 Objectives and Research Questions
From the outset, the research documented in this dissertation has sought an
explanatory computational simulation model of TOBS. Two main objectives are:

1. Creation of a largscale neurocomputational model of the neural mechanisms and
pathways involved in the learning offStasks;

2. Modeling DAOGs role in modul-Rtaskswgh | ear ni
emphasis on examining the effects of DA agonisnp€r{pA) and antagonism
(hypo-DA).

Three research questions, essentially, are investigated:

1. What is the neural substrateT/®BS?

2. How are TOBS behaviors learned by this substrate

3. What role does the neurotransmitidk play in the learning and performance o
these behaviofs

In Section 4.1, a preliminary theory, suggested by the operation of the model, will be

offered addressing these questions.
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1.1.5 Overview of Research Approach

Understanding the neural and functional mechanisms of mammalian behavior and
cognition is one of the larger goals of neuroscience and psychology, since much of this
understanding may reveal the physiological and informational basis of human cognition
and kehavior. A plethora of techniques exists for collecting relevant data including
neuroimaging (e.g., EEG, MEG, PET, fMRI), lesion case studies, and, more recently,
transcranial magnetic stimulation in humans; and cell recordings, lesions, and
pharmacologial manipulations in nachuman animal§Gazzaniga, Ivry, & Mangun,
2002) Unfortunately, each of these tedajues suffers from a limitation of scope or
viewpoint. Cell recordings provide excellent temporal resolution, but give only a sense
of the behavior of a few sampled cells, rather than a network as a whole. fMRI provides
an overall collective view of braiactivity, but with a relatively poor temporal resolution
and the spatial resolution is also much coarser than the level of individual cells. Lesions
suggest localized correlations of damage with particular psychological and behavioral
dysfunctions, buthey may also cause disruptions by interfering with functionality of
surrounding neural tissue. Currently, no one empirical technique presents a complete
enough pattern to build detailed theories of mechanism on.

Because of this situation, the study cdib mechanisms underlying mental
process is still at an essentially pioneering, exploratory stage. A vast amount of data
exists that needs to be integrated into at least provisional theories that can provide a
coherent explanatory model of functionalityheoretical neuroscience needs to construct
schemas, and assign functions, at least tentatively, to specific anatomical areas. These

integrative theories, in turn, may suggest hypotheses that can be tested by the empirical
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neuroscience methods, and nadlpw researchers to cresalidate findings in the
disparate methodologies.

Computational modeling is a theoretical method that has been effectively used in
recent decades and continues to be a promising approach to neuroscientific inquiry
(Arbib, Erdi, & Szentagothai, 1998; Churchland & Sejnowski, 1992; Dayan & Abbott,
2001; O'Reilly & Munakata, 2000)Computational simulation provides theorists with an
excellent medium for formulating their theoretical constructs. Unlike actual neural
systems, neummputational models allow perfect information of their internal state.
Activation and synaptic strengths during the execution of the model can be recorded for
all neurons in the model (assuming sufficient data storage capacity) for analysis. In
single-cell recording or neuroimaging, by contrast, one is limited by the particular
neurons sampled from on the one hand, and by the spatial coarseness of the measured
aggregate activity on the other.

Forced attention to mechanistic details is another advantiamgorder to create a
working simulation, details of mechanism that might have been overlooked or ignored
may need to be fleshed out, and this may provide a highly concrete structure whose
validity can be tested quantitatively. An additional benefd oBurocomputational
modeling approach is that it suggests specific mechanisms of cognition and behavior in
artificial systems, potentially yielding significant advances in the field of artificial
intelligence. This specificity of implementation is expie, perhaps, in design time and
perhaps immediately in terms of how well the model may accurately reflect brain
functionality, for each proposed specific mechanism adds to the likelihood of the model

disagreeing on some points with later empirical figdinHowever, these disadvantages
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are more than offset by the fact that the specific mechanisms hypothesized may suggest
later candidate mechanisms that are closer to the true ones.

A good computational model may serve as a theoretical guidepost, &ven if
wrong on some of the details. As the field of cognitive science is in its youth, a
proliferation of models and theories seems appropriate and useful, with the proviso that
the theories should be considered as works in progress. As the fieldsvatdmnore
data is assimilated, the population of theories should show some convergence. The final
theories in this process, the ones which hopefully explain the detailed functionality of
brain process, seem likely to disagree in some fashion with meenhtmodels, but are
likely to at least retain some of the elements of those theoretical constructs.

In light of the advantages of using a neurocomputational modeling approach, this
research has aimed to create a neurocomputational simulation modehwigeand
performance of TOBS. The design of the model draws upon the knowledge of what is
known about the neural pathways of executive control and reinforcement learning, the
cellular mechanisms of | earning, imgnd DAOS
Using this model, the dissertation attempts to formulate a preliminary theory of TOBS,
and to explain and make predictions about effects of hgpd hyperDA

pharmacological manipulations on TOBS learning and performance.

1.2 Review of Neuroscienckiterature

Before creating a model, it was first necessary to review relevant literature
regarding neural mechanisms of executive control and reinforcement learning, and the
role DA plays in these mechanisms. Broadly speaking, the modeling efforts have

focused on far regions of mammalian brain that are involved with TOBS: the frontal
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lobe of the cerebral neocortex, the basal ganglia, the midbrain DA nuclei, and the anterior

cingulate cortex (ACC). The theory proposed in Section 4.1, based on the model, is

primariya t heory of the #Adivision of | aboro be
Before discussing each of these regions in more detail, however, a summary may

be given of the role of each of these areas proposed by the model of the dissertation.

Frontalneocot ex is the main component of the Oac

working memory states about present and remembered stimuli and tasks, and activating

learned taslappropriate behaviors: i.e., performing th&® $napping. The midbrain

dopaminenucleiacts a oOcriticd6, signaling rewarding

actor when it performs a correct or incorrect response. They also set of the level the

activity-oriented motivatiorof the organism. A portion of ACC monitors the overall

satisfactim state of the organism, firing increasingly when the organism is becoming

more frustrated with not being rewarded. Another portion of ACC is also involved with

i nitiation of random, exploratory Obabblebd

high activity-oriented motivation. Finally, the basal ganglia provides a gating mechanism

for the actor and babble pathways, with the permissiveness of the gate set by the DA

signaled activityoriented motivation.

1.2.1 Frontal Neocortex

1.2.1.1 Overall Structure and Function of Frontal Neocortex

A decorticate animal i.e., one with its neocortex remoieds capable of
classical and operant conditioning and able to perform complex instinctual behaviors
such as grooming or copulation, but has difficulty learningmex discriminations,

planning, or learning to navigate a complex environnjgatb & Whishaw, 2003) The
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neocortex may be thought of as an evolutionarily later layer of the brain which allows

increased flexibility in adapting morestinctive behaviors to novel situations, permitting

what 1is generally consi dd€MaeLdan, 90 gher 6 cogn
While the posterior portions of neocortex and the temdobe seem to chiefly

be involved with sensory processing and memory, the frontal cortex seems to be devoted

to matters related to control of behavior: motor processing and executive ¢&olln&

Whishaw, 2003; Luria, 1973)The frontal coex can be thought of as divided into a

primary motor, a premotor, and a prefrontal component.

1.2.1.2 Primary and Premotor Cortices

Primary motor cortex (M1), located in Brodmann area (BA) 4 (see Figure 1.1 for
BA map), synapses directly with spinal nens and is responsible for the execution of
simple motiongKolb & Whishaw, 2003) It is organized in a coarsely somatotopic
mapping in broad face, upper limb, and lower limb regions, but there is notta-one
mapping within thes regions, but evidence suggests, rather, a distributed convergence
divergence pattern between M1 neurons and the controlled muscles within an extremity
(Schieber, 2001)

The premotor region of the frontal cortex consists of BA 6, with the lateral
portion being considered the premotor cortex (PMC) and the medial pbetiog the
supplementary motor area (SMA); and BA 8, whose lateral and medial portions,
respectively, are the frontal eye fields (FEF) and supplementary eye fields (SEF) and are
involved with execution and planning of eg@vements. Whereas M1 is believede
more associated with simple, immediate movements, PMC and SMA are more associated

with control and coordination of movements. PMC is believed to be involved in
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preparation for and sensory guidance of mover(\atige, 1985) Evidence suggests that
the dorsal portion of PMC may be involved with translating (visually cued) working
memory instructions into motor sequen¢@hbayashi, Ohki, & Miyashita, 2003)or
PMC, the emphasis seems to be on learning mappings between external cues and
behaviorgDeiber et al., 2004; Mitz, Godschalk, & Wise, 199By comparison, SMA is
believed to be more involved with internally cued, gsited, voluntary behaviors

(Cunnington, Bradshaw, & lansek, 1996; Deiber et al., 2004; Passingham, 1993)

1.2.1.3 Prefrontal Cortex

There seems to be some variance in the literature on how the remaining portion of
frontal cortex, the prefrontal cortex (PFC), is anatomically defined and subdivided (see
(Kolb & Whishaw, 2003; Miller & Cohen, 2001; Ridderinkhof, véen Wildenberg,
Segalowitz, & Carter, 2004dr some example schemes; see Figure 1.2 for Miller and
C o h e(B0019. One major difference is that some schemes include the anterior
cingulate cortex (ACC), BA 24, 25, and 32, in PfoIlb & Whishaw, 2003;
Ridderinkhof, van den Wildenberg et al., 200#)d others do ngMiller & Cohen,
2001) Thh s di ssertation wil/ | ar g€00y) foll ow Ri
conventions. Thus, the lateral gon of the PFC is divided up into a dorsolateral portion
(dIPFC: BA 9 and 46), a ventrolateral portion (VIPFC: BA 44 and 45), and an inferior
frontal junction portion (IFJ: junction of BA 8, 6, and 44). The ventromedial portion of
PFC, the orbitofrontatortex (OFC) consists of BA 10 (also called the frontopolar
cortex), BA 11, 13, 14, and 47/12. The remaining medial portions of PFC consist of the

dorsomedial PFC (dmPFC: medial part of BA 9), and the ACC (BA 24, 25, and 32).
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PFC is generally said toe involved with executive control and working memory
(Funahashi, 2001; Funahashi, Bruce, & GoldfRakic, 1989; Fusted, 973; Miller,
2000; Miller & Cohen, 2001; Miller, Erickson, & Desimone, 1996pr this role, it is
advantageously centrally connected to read in a aficy of inputs, and exert an
influence on behavior through premotor and motor outputs (see Figure 1.2). The diverse
inputs to PFGKaufer & Lewis, 1998; Kolb & Whishaw, 2003; Miller & Cohen, 2001)
include
1 posterior parietal cortex (visual spatial location)
1 inferior temporal cortex (visualopect/feature identity)
1 superior temporal gyrus (auditory information)
1 caudal parietal lobe (somatosensation)
1 gustatory cortex in insula
1 olfactory regions of the pyriform cortex
1 rostral superior temporal sulcus (multimodal representations, maybe semantic
memory)
1 hippocampus (episodic and semantic memory)
1 amygdala (emotional and internal drive information).
In addition, PFC outputs to secondary motor areas, which means that, because of
reciprocal connections, the secondary motor areas can inform the PR@oafgmotor
plans. So PFC is wefilaced to represent abstractions of conjunctions of stimuli, internal
state, recalled declarative memory traces, and ongoing motor behavior.
OFC is involved with contextlependent mapping of stimuli to reinforcemeis (

O learning), and so allows the organism to better control revaad punishmentelated
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behavior according to the current environmental cor{featls, 1999) Of greater

interest in this dissertation, however, are the more lateral components of PFC (dIPFC and

VIPFC) for these receive visual and auditory information from the parietal and temporal

| obes (see Figure 1.2). (ACCb6s role wildl
PFC cellular activity is believed to be involved with the online (i.e. through

working memory activation) representation of abstract riMker & Cohen, 2001;

Wallis, Anderson, & Miller, 2001and Rougier and colleagu@@ougier, Noelle, Braver,

Cohen, & O'Reilly, 2005have developed a reinforcement learning model where PFC

cells learn rules for which stimulus feature to attend to, and these, throudoviop

activation, bias the activation the posterior corteto-motor output pathway of the

model. It is an example of what Miller and Col{&001)have suggested is the

fundamental mechanism of PFC influence: delay (i.e., working memoiyityat PFC

cells, through tojmlown feedback connections to other areas of brain, including the

posterior cortex and secondary motor areas, adds a biasing activation that temporarily

changes the inptautput mapping. Working memory keeps track of chagggnitive

context state and biases the ordinarily more automatic-oytiput pathways, so that, for

example, in the Stroop task, the cefteading instruction may bias the inpuitput

pathways temporarily to facilitate the correct responses instaad default wore

reading responses.

1.2.2 Basal Ganglia

1.2.2.1 Basal Ganglia as Crucial Area for Behavioral Organization
Beneath the neocortex lie evolutionarily older regions of brain that are critical to

mammalian behavior, both instinctual and learned. The basal ganglia (BG; see Figure
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1.3) are a set of structures that are critically involved with motor control in vatésb

(Grillner, Hellgren, Ménard, Saitoh, & Wikstrom, 2005; Redgrave, Prescott, & Gurney,

1999a) even ones as primitive as lamprégsillner, 2003) Diencephalic animads

those deprived of both neocortex and basal ganglia, but retaining the diencephalon,

including thalamus and hypothalamusxhibit affective displays andsponses to

stimuli, and hyperactivity, including hyperactivity in locomotion, and can be fed with

effort, but generally their behavior is aimless and uncoordir(#&elth & Whishaw,

2003) Decorticate animals with basal ganglia int&ctwever, are able to learn to

crudely forage and link adaptive behaviors together into sequences. Paul MacLean

(1990)in his triune brain theory regarded the BGasthece f component of t
braind, more fundamental than the I|imbic s
emotion. Panksep{l998, p. 70puotes an early neurophilosopher (unspecified) as
saying, Aithe royal road to the soul goes t
be important both for the execution of instinctual, stereotypic fixed action patterns

(Berridge, Aldridge, Houchard, & Zhuang, 2005; Greenberg, 2@0R) for learned

habitual behavior§Graybiel, 1998; Packard & Knowlton, 2002)

1.2.2.2 Action Selection and the Braking Release Mechanism

The BG have been implicated in many functions, but one influential theory that
seems to explain the generality of basal ganglia function igtkahvolved in action
selection: A[the selection of] some action
(Redgrave et al., 1999ad that conflicts are resolved between systems competing for the
same output resource, as for example, when an organism has cues simultaneously to

perfformam movements in different directions.
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through selective excitation of behavior, but rather seems to work through a peculiar

Asel ecti ve br aki (Ggrney, Breseott, & Redgrame, 20013 Minks m

1996; Wichmann & DelLong, 1996)Mink (1996)e x pr esses t he i dea as

hypothesis states that the basal ganglia do not generate moveinstead, when

voluntary movement is generated by cerebral cortical and cerebellar mechanisms, the

basal ganglia act broadly to inhibit competing motor mechanisms that would otherwise

interfere with the desired movement. Simultaneously, inhibitiom®ved focally from

the desired motor mechanisms to allow that
Figure 1.4, borrowed frorfGurney et al., 2001 summarizes a possible

anatomical circuit implementing the action selection described above. Inputs to the basal

gangliasuch as the cortex or limbic areas excite the input area of the BG, the striatum

(caudate nucleus and putamen and ventral striatum). The main pathway, sometimes

referred to as (Wichnranni&Delorg,cl996iprat mGa ypat hwayo

(Frank et al., 2004; O'Reilly & Frank, 2006)uns through a set of striatal cells inhibiting

the output areas of the BG, the internal seghof the globus pallidus (GPi) and the

substanti nigra pars reticulata (SNr). The GPi/SNr cells fire in a tonically inhibitory

fashion, and all of the feedforward striatal cells are GABAergic (inhibitory), so the direct

pathway disinhibits the areas gmated by the BG output cells, such as the thalamus or

areas in the midbrain or brainstem. Thus, striatal activity through the Go pathway

selectively disinhibits partidulrarctmeptadhwm

running from cortical, et¢into the subthalamic nucleus (STN) is excitatory and diffuse

and leads to widespread excitation of the GPi/SNr cells which is probably used for an

umbrell a of 6defaultod inhibition around mo
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(Mink, 1996) Go pathway activation essfethe¢ i al |y
desired behavior. The fAindirecto or fANoGoO
Afvet oo undesired behaviors. This runs fro
cells which, when active, inhibit the external segment of the globdlidysa(GPe).

These cells, by default, tonically inhibit both GPI/SNr and STN, so activation of the

NoGo pathway disinhibits inhibition of efferents of the BG. Two different families of

DA receptors, D1 and D2, are believed to modulate the activityeoBthand NoGo

pathways, respectively{Gerfen,1992) Approximately speaking, DA has an excitatory

effect on the Didominated cells and an inhibitory effect on the dninated cells

(Gurney et al., 2001; Hernandeapez, Bargas, Surmeier, Reyes, & Gaga, 1997;

Hernandez 6pez et al., 2000) Because of this, dopamine release would tend to excite

the Go pathway and suppress the NoGo pathway. According to this model, the akinesia
and bradykinesia of Par ki nedbDAgausingthetetdoe exp
be sluggish Go pathway and disinhibited NoGo pathway ac{Miighmann & DelLong,

1996) A number of recent neurocomputational models of basal ganglia action selection

make use of this Go/NoGo pathway princifown, Bullock, & Grossberg, 2004;

Frank et al., 2004; O'Reilly & Frank, 200@&nd the model in this dissertation follows

Suit.

1.2.2.3 Diverse Parallel Corticostriatal Selection/Gating Pathways

An input-output circuit such as described abdenstantiated myriad times in the
BG, with different inputs and outputs. Some efferents of the BG outputs are subcortical:
midbrain and even brainstem nuclei, such as are involved with basic motor programs

(Grillner et al., 2005) The neocortex, however, is also thoroughly connected, through
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the thalamus, to the basal ganglia, so that it, too, falls under the inhiteleage control
of the BG. As a result, the BG participatnot only in motor control, but also cognitive
and affective contrgiMiddleton & Strick, 2000) The precise inpubutput mapping of
these corticebasal ganglial pathways it is still a topic of investigation, but one currently
prevalent theory is that the BG consists of a benof segregated, parallel
thalamocortical loops, each performing their action selection on a different information
pathway(G. E. Alexander, DelLong, & Strick, 1986; Middleton & Strick, 2Q01Ir)
(Middleton & Strick, 2001)there are proposed to be several sets of loops, based on
anatomical tracing evidence. There are skeletomotor loops regulating the motor and
premotor areas of the frontal cortex: M1, SMA, and PMC (dmnal component).
There are oculomotor loops controlling FEF and possibly SEF. There are separate
dorsolateral PFC loops that control BA 9 and BA 46, and these are likely to be important
in planning and spatial working memaiiddleton & Strick, 2000) There are lateral
orbitofrontal loops (mainly BA 12) which are probably associated with object working
memory function. There are likely to be medial OFC loops (mainly BA 13), and ACC
loops (both moter(BA 24c) and limbierelated (BA 25,32)). Finally, there are likely to
be BG loops associated with inferotemporal (IT) and posterior parietal cortical (PPC)
areas which are involved in object recognition and spatial perception, respectively
(Milner & Goodale, 1998)

Another way of characterizing the division of the basal garigtial & Weiner,
1994, 2000j)s to divide it into motor, associative, and limbic components. The motor
circuits mainly run through the (dorsal) putamen into motor and premotor areas. The

asso@tive circuits mainly run through the (dorsal) caudate nucleus into dorsal PFC. The
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limbic circuits run through the ventral striatbmvhich includes the ventral putamen and
caudate nucleus, the nucleus accumbens (NAc), and the olfactory t&hetolenedal

PFC areas (e.g. OFC and portions of ACC: prelimbic cortex (BA 32) and infralimbic
cortex (BA 25)) related to limbic processing. Joel and Weih@94, 2000propose that
there may not be a strict segregation of the thalamocortical loophabuhe loops may

be interconnected via a branching between striatal areas and the distinct nigral/pallidal
outputs.

The parallel, possibly segregated, striatal circuits, such as discussed(€arfter
Alexander et al., 986; Middleton & Strick, 2001are likely to be differentiated along a
dorsolaterato-ventromedial gradierVoorn, Vanderschuren, Groenewegen, Robbins, &
Pennartz, 2004) Typically, adistinction is drawn between dorsal and ventral striatum;
Figure 1.5 shows the boundary usually drawn. The dorsolkatevahtromedial axis is
depicted in Figure 1.6. The motoric components of the striatum lie in the dorsolateral
portion (putamen andaudate nucleus) whereas the associative and limbic components
lie in the more ventromedial regions (nucleus accumbens core and shell). The entirety of

this striatal axis is innervated by the dopaminergic nuclei, as will be discussed soon.

1.2.2.4 Reinfarcement Learning in the Gating Pathways: Actor/Critic Learning

So far, only the basic feedforward activity of the BG circuits has been discussed.
However, an important question is how these action selection pathways develop in the
first place. The likgt answer is that DAlependent corticostriatal plasticity allows
reinforcement learning in the B®ahon, Deniau, & Charpier, 2004; Reynolds, Hyland,
& Wickens, 2001; Reynolds & Wickens, 200ZJhe BG has been extensively implicated

in reinforcement learning as well as action select@raybiel, 1998; Packard &
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Knowlton, 2002) Lesions of striatal cells, particularly in the dorsolateral striatum
(Faure, Haberland, Condé, & El Massioui, 2005; Packard & Knowlton, 2002; Yin et al.,
2004) tend to disrupt the acquisition of habituaRSesponses. Dopamine depletion in
the dorsal striatum, either through antagonist delivery or through lesioning of DA cells,
also leads to impairment off$ learning(Faure et al., 2005; Robbins, Giardini, Jones,
Reading, & Sahakian, 1990)
While the dorsal striatum seems to bereninvolved with SR learning, the
ventral striatum appears to be more important-@ Barning(O'Doherty et al., 2004)
but disruptions to plasticity or dopamine transmission there also intevitére
instrumental learningHernandez, Sadeghian, & Kelley, 2002; Sritbe & Kelley,
2000) The ventral s tRrmamings imatepicofonteestinthis | ear n
di ssertation. guesiei0d)suggedt that taenddrsakswidtumasan
6actord pat hway, whereas the ventral stria
recognizing the rewargdotential of the situatt and r el aying this to
the latter to respond correctly. For example, if a rat is learning to press a lever (R) in
response to a light (S), for a fopellet reward (O), the dorsal striatal actor, will be
rewarded by the ventral stratcritic when the actor stumbles upon the correct behavior,
and this wild. Astamp Iind the response. Bu
between the light (S) and the foddlivery (O) for the instrumental learning to take
place. One possibilitgs to why could be that the unexpected delivery of the reward in
the absence of an alreatbarned (SO) association might not be enough to signal
learninginthe &R act or . I n ot her words, the ventr.

train the dorsadtriatum. Another possibility, however, might be that the organism is not
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aroused enough to try a response until it learns a mapping between the light and potential
reward; in other words, the ventral striatum may need to engageeintive learning
(Ikemoto & Panksepp, 1998gfore the organism will be motivated to try a response for

which it might be rewarded.

1.2.3 Midbrain Dopamine Nuclei

1.2.3.1 DA Receptor Types, Their Effects and Locations

The neurophysiology of DA is complex, but wsilidied, with thousands of
papers extant in the literature on the subject, and discoveries continuing to be made. Five
(agreed upon) subtypes of DA receptors exist, designatddI¥Bergson et al., 1995;
Gardner & Ashby, 2000) These are grouped into two families, thel®& family (D1
and D5), and the Dhke family (D2, D3, and D4). In this paper, henceforth, when D1 or
D2 are referred to, it will refer to the family, not the receptor subtype. Both D1 and D2
(and the rest of their families) are slagting metabotropic {protein eceptors, but they
have opposing effects because D1 activation stimulates the second messenger cAMP
production, whereas D2 activation inhibit§@reengard, 2001)In the striatum, the
consequence is that D1 activation enhances striatal medium spiny neuron excitability (in
relatively depolarized conditions) by enhancingype calcium currents, but D2
activation (in the NoGatriatal cells, at least) reduces neuron excitability by reducing
these same current&reengard, 2001; Hernandkeapez et al., 1997; Hernandébpez
et al., 2000) Actually, D1 activation, in effect, heightens the sigimahoise ratio of cell
responsiveness, suppressing firing in relatively hyperpolarized cells, and expfdiiting
in relatively depolarized ondslernandeZ.6pez et al., 1997; Schultz, 1998; Servan

Schreiber, Pritz, & Cohen, 1990)
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D2 activity should oppose this action, making the cell responsiveness more
permissive, but less active during mmehge stimulation. However, in the striatum, D1
receptors seem to predominate in the medium spiny neurons of the direct (Go) pathway,
whereas D2 receptors predominate in the neurons of the indirect (NoGo) pathway
(Gerfen, 1992) In primate neocortex, both D1 and D2 receptors are present, withthighes
concentrations in the frontal lobe, but D1 is abouR@Gimes more frequent than D2
(Lidow, GoldmanRakic, Gallager, & Rakic, 1991)The neocortial D1 receptors are
mainly located in extrasynaptic portions of the dendritic spines of pyramidal cells
(Smiley, LeveyCiliax, & GoldmanRakic, 1994)which means that their DAergic
activity is more likely driven by extrasynaptic concentrations of DA than by synaptically
released DA. Evidence shows that D1 receptors are also extrasynaptic in the striatum and

substana nigra(Caillé, Dumartin, & Bloch, 1996)

1.2.3.2 Anatomical Efferent Connectivity of the Midbrain DA Nuclei

The major nuclei containing dopaminergic cells are all located in the midbrain, in
neighboring areas (movingté&atto-medial) designated A8 (the retrorubral area), A9
(the substantia nigra pars compacta; SNc), and A10 (the ventral tegmental area; VTA)
(Oades & Halliday, 1987; Voorn et al., 2004Yonnections from these nuclei to the
striatum fall along the dorsolatert@-ventromedial axis described by Voorn and
colleague42004)and shown in Figure 1.6, with A8 connecting most dorsolaterally, VTA
connecting most ventromedially, and SNc connecting in an intermediate fashion to both
dorsal and ventral striatum, though priithathe former. The SNc pathway, which
projects mostly to the (dorsal) caudate nucleus and putamen (collectively called the

neostriatum), is generally referred to as the mesostriatal, or nigrostriatal, pathway
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(Gardner & Ashby, 2000; Le Moal & Simon, 1991hough it includes, to a much lesser
degree, connections from VTA. Asmewhat of an artifact of terminology, the VTA
connections to the nucleus acccumbens (a large portion of the ventral striatum) are
considered part of the mesolimbic pathway which also innervates other limbic regions
such as the amygdala, bed nucleus ch seiminalis, cingulate cortex (including ACC),
parts of the hippocampal complex, €@ardner & Ashby, 2000; Oades & Halliday,
1987) VTA also connects, through aesocortical pathway, primarily to frontal portions
of neocortex such as PFC and premotor regions, but also to sensory associational areas,
including areas in the temporal cori@ades & Halliday, 1987; Schultz, 1998)igure
1.7, taken from a recent rew (Fields, Hjelmstad, Margolis, & Nicola, 20Q&hows the
major pathway connectivity of the VTA.

The model developed in this dissertation includes pathways that are likely to have
correspondents in mammailidrain that fall within the SNc nigrostriatal pathway and

within the VTA mesolimbic (mesoaccumbens in this case) and mesocortical pathways.

1.2.3.3 DA Cell Activity and Regulation of DA Release: Tonic vs. Phasic
Mechanisms

DA cells that are active mayle twothirds of them on average at a given téme
tend to fire single spikes at an irregular slow rate (interspike intervals220@ns),
driven by endogenous (BumeycGhioda,lk&race, 1694;nduct an
Grace, 2002) When depolarized further, they may switch to a bursting mode (average
inter-burst intervabround 350 ms; burst frequency > 12 Hz), and at even higher
depolarization, become inactive agéunney et al., 1991; Ungless et al., 2004)

Background (Adefault o, unstimul ated) actiyv
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bursting(Schultz, 2007) Bursting seems to depend upon excitatory activity of the
pedunculopontine nucleus (PPN) and laterodorsal tegmental nucleus (&EnLijtz,
2007)

In the striatum, the dopamine transporter (DAT) very quickly reuptakes synaptic
releases of DAGrace, 1991, 2002; Schultz, 1998)he baseline concentration of DA,
probably maintained by spontanedusl e f aul t 6 DA <cell fi¥fing,
10 nM(Schultz, 2007) This is enough to stimulate higtifinity D1 and D2 receptors,
but not their lowaffinity counterparts. In the striatum 80% of the D1 receptors are low
affinity, and over 80% of the D2 receptors are kagfnity (Schultz, 1998) As D1
receptors are primarily extrasynaptic, this means that they are (mostly) quiescent by
default, whereas the D2 recep, both synaptic and extrasynaptic, are likely to have
some degree of default activity.

Under nonrbursting DA firing, the DA concentrations may increase, even by a
factor of 2 or 3, but this is probably not enough to engage thaffimity receptors
which require activation concentrations on the order of hundreds ¢&oMiltz, 200Y.
However, since 20% of the extrasynaptic receptors aredfigtity, the rate of non
bursting firing might still affect a significant number of the D1 receptors, in addition to a
majority of the D2 receptors. Some of the D2 receptors are raigabéing
autoreceptors on the DA cell synaptic terminals, and these may be activated by this
extracellular DA, leading to negatifeedback inhibition of DA cell dopamine release
(Grace, 1991, 2000)

When bursffiring is encouraged, DA release is much augmented and overwhelms

DAT reuptake, exciting the postsynaptic DA receptors, and also spilling out into the
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extracellular area around the target synapses so thattsharpeak concentrations of
extragynaptic DA briefly run over the lovaffinity receptor threshol@Schultz, 1998)
Thus, most oftie D1 receptors would require burst firing to activate. The D2
autoreceptors would more strongly inhibit the DA release from the DA terminals.
Grace in his research has emphasized that tonic (i.e. extracellular) DA inhibits
phasic (i.e. DA cell spikingriggered) DA release. Both in striaty@race, 1991and in
PFC(Takahata & Moghaddam, 199&here are also glutamatergic receptors on the DA
cell axon terminals which afferent neurons (e.g., from the neocortex) may activate to
promote (primarily extrasynaptic) release of DA, but such release se@®gsdand on
some baseline DA cell firing perhaps providing available DA reserves to be released
(Grace, 2002; Keefe, Zigmond, & Abercrombie, 199Ppwever, the glutamatergic
afferents could thereby provide a mechanism by which PFC and ottieaktareas
could inhibit striatal (phasic) DA action, something which may have clinical
consequences. GratE991)hypothesizes that in schizophrenia, low ambient PFC
activity leads to reduced baseline extracellular tonic DA which disinhibits phasic DA
action because of decrease of D2 autoreceptor action, and possibly because of up
regulation of postsynaptic DA receptors. By comparison, regarding alcohol and
psychostimulant addiction, he hypothesi@@sace, 2000)hat the drugs tend to increase
the general tonic level of DA in striatum, whichusas dowsregulation of response to
phasic DA signals. Then, when the drugs are withdrawn, it takes time for the phasic DA
response to recalibrate, and the subject feels a dysphoric state while the phasic DA

response is hypoactive.
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A number of situatios can lead to lorgerm DA concentration increases for a
duration on the order of minutes (as measured by microdialysis) where the increases are
from 20%100%, and sometimes up to 200% above ti@® BM baselingSchultz,

2007) Again, these concentrations are probably not sufficient to activate treffiovy
receptors, so D2 reptors are probably primarily affected. Schi(#@207)suggest that

the presynaptic glutamatergic release mechanism previously mentioned is more likely to
be responsible for these lotgrm DA concentration changes than the phasic signal.
However, as will be seen in Section 1.2.3.6, there is evidence of an exangpéethe

DA cell firing rate can dynamically modulate DA concentrations over a time period on
the order of a few seconds.

The tonic/phasic interaction described above holds mainly for the striatum. The
dynamics of DA release in PFC are likely to be défe because there is little DAT, but
DA is instead reuptaken by noradrenergic (NE) reuptake mechafanse, 2002)

This likely leads to a much slower reuptake dynamics. In addition, the predominance of
extrasynaptic D1 receptors which areiéetd to be critical for working memory function
(Durstewitz & Seamans, 2002; Zahrt et al., 199¥%)gests that the base rate of DA cell

firing may be responsible for maintaining a tonic level of PFC dopamine that is necessary
for proper PFC function, including cortical plasticity, as will becdgsed soon.

A note of clarification would be useful
and 6phasicd6, both in this dissertation, a
might refer to the effects of extracellular concentrations®fD as i n Graceds p
might refer to the effects of a baseline rate of firing of the DA cells. In this dissertation,

the latter is mostly intended. The former and latter could be decoupled by, for example,
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the inhibitory effects of the D2 autamptors, or by corticostriatal glutamatergic
stimulation of the DA terminal bout ons.
cell spikedriven release of DA. In this dissertation, though, the term will be mainly used
to designate shoterm eventsd.g. bursts or dips) that modify the baage of firing, or,
alternatively, the rate of DA cell bursting since typical firing seems to bersitafiring
punctuated with short bursfigngless et al., 2004)A central theme in this dissertation is
that the tonic DA firing is aflile like a carrier wave in radio communications, and the
phasic changes are like frequermogdulation of this. The carrier wave itself broadcasts
to DA targets a level of activitgriented motivation in the system, whereas the
superimposed frequency mddtions signal events that should lead to (reward or

punisher) reinforcement.

1.2.3.4 Conditions for DA Cell Phasic Bursts and Dips

Extensive study has been made by Schultz and colleéigioetio, Tobler, &
Schultz, 2003; Hollerman & Scha, 1998; Ljungberg, Apicella, & Schultz, 1992;
Schultz, 1998, 2007; Tobler, Fiorillo, & Schultz, 2005; Waelti, Dickinson, & Schultz,
2001)of the conditions under which DA neurons fire in response to environmental
events. Figure 1.8 shows their main results: DA ceks\iith a phasic burst when there
is an unexpected reward and when there is a stimulus cue that predicts a reward
(Hollerman & Schultz, 1998; Ljungberg et al., 1992; Waelti et al., 208 t)firing is
phasically suppressed when a reward that was predicted based on a stimulus cue is
omitted(Hollerman & Schultz, 1998; Waelti et al., 2001)A cells also respond to
salient or novel events, though the response to these habituates (lgpioyoerg et al.,

1992) There is also evidenckdt the amplitude of phasic bursts may encode the
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amount/intensity of reward received or (during the conditioned stimulus) expected
(Tobler et al., 2005) Evidence in this research has suggested that the responsive cells
from the DA nuclei (including SNc and VTA) fire in synchrony, suggesting a coupling
between thedivation of the nuclef{Ljungberg et al., 198). One possible mechanism
suggested that might allow this is electrotonic coupling of the DA cells during burst
activity, possibly due to the influence of the neuropeptide (Bikiney et al., 1991)

Also, as previously mentioned, evidence suggests that excitatory activity of the PPN is
important for triggering burst firing in the DA cells likely to be involved in phasic release
(Schultz, 2007)

More recently, there has appeared evidence that DA cells are suppressed by
aversive (punisher) stimuli. Ungless and colleag@@84)discovered that earlier studies
had mistakenly labeled aversive stimuhesponsive noiDAergic cdls in VTA as being
DA-releasing. Their evidence showed that the true DA cells were actually inhibited by
aversive stimuli; both basal firing rate and rates of emitted bursts were slowed during the
application of foot pinch to rats. Probably the VTA seliat were excited by aversive
stimuli were inhibitory and responsible for the suppression of the nearbgr@&VTA
cells. In addition to these cells, there are GA8#ic cells in VTA which receive wide
afferent input (from areas such as LH and PR@) groject to the DAergic VTA cells
(Fields et al., 2007) These might also allow aversive cues to inhibit the DA cells.

The evidence, then, suggests that phasic DA signhals may signal reward prediction
errar which can be used for reinforcement learr(idgllerman & Schultz, 1998; Schultz,
Dayan, & Montague, 1997; Suri, 2002; Waelti et al., 2000)hen an organism is not

expecting a reward and it receives one, there is a positive prediction error, and a burst is

33



signaled. On the other hand, whenthe organis s expecting a reward

there is a negative prediction error, and there is a phasic dip (bifiskels et al., 2007)
evidence for reward omission dips have not been universally obsehéen

expectations and reward receipt are in alignment, there is zero prediction error and firing
remains at baseline. There are additionally dips during aversive stimuli and bursts during
novel or extremely salient stimuli (but s@eelds et al., 2007)yats have shown responses
for fully predicted rewards). Redgrave and colleagues have challenged the conclusion
that the DA signal represents reward prediction diRedgrave, Prescott, & Gurney,

1999, and favor the interpretation that phasic bursts signal a need to switch attention or
select behaviors. But it seems possible that the phasic DA signal could play more than
one role, signaling both prediction error and/or a need to attend to austimiolthe

model in this dissertation, DA activity phasically increases during rewards, but also
during novel stimuli. Under task learning conditions, noveltjuced phasic bursts

actually cause the model to learn the task in cases where it wouldthexeise failed

by encouraging explorative behavior and simultaneously rewarding it, even when an
actual reward is not delivered. Generally speaking, phasic bursts may, in addition to
promoting learning, temporarily encourage initiation of new behaviehasic dips may,

in addition to promoting unlearning, temporarily discourage initiation of new behaviors.

The model in this dissertation would suggest this to be plausible.

1.2.3.5 Afferent Regulation of DA Cell Firing Rate
Many researchers make a siifyphg assumption about the homogeneity of DA
cell function, but there are likely several potentially independent circuits, due to the

heterogeneous structure of the DA nu¢kgelds et al., 2007; Gardner & Ashby, 2000)
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The model developed in thissdertation recognizes a variety of efferent projections, but
follows other researchers in treating SNc and VTA as a single compartment responding
in a uniform way, as if their afferents were the same and exerted the same influence.

There is evidence fdunctional dependence of the SNc pathway on the VTA
compartmentJoel & Weiner, 2000) The ventral pallidum which is the output part of the
nucleus accumbens pathway projects to P@hvileva & Gorbachevskaya, 2008T his,
in turn, projects in an excitatory way (see below) to SNc. This suggests that SNc is under
control of NAc activity through the standard Go pathway circuit shown in Figure 1.4.
But NAc is dopaminergically innervated by VTA. The VTA compartment, then,
probably enables ventral striatalediated release of SNc activity, though other afferents
of the enabling NAc pathway, e.g. amygdala or orbitofrontal cortex, may also need to be
actve. lkemoto and Panksep999)have suggested that the ventral striatal pathway is
more involved with flexible approach behavior and incentive learning whereas the dorsal
striatal path is more involved with habitual reactive wdra It seems likely that ventral
striatal activity triggered by incentive cues (e.g. dnsg cues) represented in OFC
and/or amygdala could disinhibit SNc unit activity which would promote habitial S
responses mediated by the dorsal striatum, inetudrug use responses.

There are other important afferent neuroanatomical differences between the two
DA nuclei: the SNc afferents seem to be primarily GABAergic (therefore inhibitory)
whereas the VTA afferents are primarily glutamatergic (therefore exgijdLee,
Abercrombie, & Tepper, 2004)Focusing on the VTA compartment/s, there is also

evidence that there are separate VTA circuits supplying DA to PFC and NAc because
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intra-VTA administration of neurochemicals can lead tifedent DA concentration
changes in PFC and NAEields et al., 2007)

However, as Schultzdos wor k hamwmlatadhown r e
response by the separate compartments, they will be treasted same in this
dissertation, though future research may want to address more of the heterogeneities in
the mesostriatal/mesocortical axis. The fact that the PPN innervates both SNc and VTA
(Fields et al.2007)and it is a likely excitatory source of the reward respg8séultz,

1998, 2007kuggests a mechanism by which both compartments could possibly
synchronize irat least their rewardelated responses. As mentioned, also, electrotonic
coupling (i.e. gap junctions) could allow nearby DA neurons to synchronize under certain
neurophysiological condition®unney et al., 1991)

Figure 1.7 shows the major afferents (as well as efferents) of(¥ieAds et al.,

2007) The connection to the lateral hypothalamus is one key excitatory afferent
pathway. Cells in LH that release the neuropeptide orexin into areas such as VTA and
NAc are believed to fire selgeely in association to pursuit of consummatory rewards
(e.g. food and druggHarris, Wimmer, & AstornJones, 2005) Activation of LH is

stronger when animals are searching for food and is suppressed when foraging is
successful and the animal has switched to consum{Rmmksepp, 1998)

Two neuromodulatory nuclei project to VTA: the NEergic locus coeruleus and the
serotmergic dorsal raphe nucle(Sields et al., 2007) NE release is associated with
attentional arousal and, like the other major catecholamine, DA, increases thdaignal
noise responses in target neur@anksepp, 1986%0 this connection could allow DA

activity in VTA to increase during vigilance statesH® release is largely emotionally
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and behaviorally inhibitoryPanksepp, 1986and dorsal raphe nucleastion inhibits
DA cell activity (Schultz, 1998)so this connection may allow a pathway for D&l ¢
suppression. An opponent relationship betweéfTeand DA has been suggested that
may have an important bearing on the mechanisms of reinforcement le@aimg
Kakade, & Dayan, 2002)

Another (likely excitatory) afferent of VTA is the amygd@&chultz, 1998) The
amygdala in general is involved with evaluative learning and its various nuclei are known
to respond both to rewarding and aversive stiifidixter & Murray, 2002) Other major
afferents to the VTA include the laterodorsartental nucleus (LDT), PPN (through an
indirect pathway through SNc), and PEields et al., 2007) These exert various
excitatory and inhibitory influences on VTA DA and GABA cells feeding into two
distinct PFC and NAc projection circuifgields et al., 2007) A functional explanation
of these different influences remains to be sorted out, but there are clearly several
pathways by which other areas of thrain could potentially stimulate or restrict DA cell
firing from VTA.

The other major DA compartment, the SNc, receives GABAergic connections
from the striosomes (patatells) of the striatunjGerfen, 1992)as well as from SNiLee
et al., 2004) Recent evidencg.ee et al., 20043uggests that pallidal chemical excitation
leads to increased bursting of DA cells (in conjunction with only a mild increase of DA
cell firing rate), and an elevation in neostriatal extracellular DA. By contrastiiedect
stimulation of the same area leads to DA cell inhibition. This seeming contradiction is
reported to probably be due to multiple pathways from GP to SNc through the SNr which

have varying sensitivities. The PPN provides a major excitatory inpuédneixolinergic
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and glutamatergic) to SN8laha & Winn, 1993; Men&egovia, Bolam, & Magill,
2004) Brown and colleagug8rown, Bullock, & Grossberg, 199%ave constructed a
neurocomputational model of the learning dynamics described by Schultz and colleagues

of the phasic DA signal involving a number of these pathways.

1.2.3.6 Behavioral and Cognitive Correlates of DA Cell Firing

As mentioned, evidence suggests that the switch of DA neurons from-siingle
mode into a burst mode has a greater impact than a change in their overall firing rate on
extracellular concentrations of DA in the striat(iree et al., 2004; Schultz, 19987 his
is probably due to the fast DAT reuptake mechanisms in the striatum. Stimulus events
associated withewards may trigger bursting in the DA cells that release a large amount
of DA. In addition to time (on the order of tens of ms) required to reuptake released DA,
effects of DA receptor activation may persist over loegn period (hundreds of ms to
minutes) because DA receptors are metabotropic, acting through much slower second
messenger pathways mechanisms than faster acting (c. 1 ms) ionotropic (AMPA or
GABA) receptordGreengard, 2001)Therefore, cues for phasic DA release could lead
to behavioral and cognitive effects persisting over a second to minute duration. Such
phasic signals are probably involved with the pvasgly-described shottterm reward
signals that may allow reward erfprediction.

Rewards and other stimuli, however, may also trigger changes in dopamine action
(measured by extracellular DA concentration) over a longer time course, such as might be
measured with voltammetry (the order of seconds) or microdialysis (the order of minutes)
(Schultz, 2007) Ikemoto and Panksegfp999)review much of this evidence for the NAc

(ventral striatum) DA. Longerm rises in extracellular DA have been observed during
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both anticipatory and consummatory phases of fogpgehavior. Novel and/or
unusually tasty food also lead to increased DA. Interestingly, during operant tasks NAc
DA rises when trials are begun and lowers back to a baseline after a session is completed.
Within a session, there are often rises in DAmyitever pressing and eating. Aversive
stimuli, too, can lead to increased extracellular DA levels, which initially may seem
puzzling, given DA cell suppression by aversive stimuli, but could be explained by
engagement of glutamatergic stimulation medas. As lkemoto and Panksepp point
out, the aversive stimulus DA may be involved in facilitating active avoidance behaviors.
Pharmacological microinjection and@HDA lesions have been used to perform
DA level manipulationglkemoto & Panksepp, 1999 The former involves agonist or
antagonist injections into localized brain areas. The latter technique selectively lesions
DA cells projecting to particular targets, though this selectivity in location has some
significant limitations. InjectionsfdA and DA agonists into NAc tend to lead to
heightened locomotor activity, specifically activity of an explorative and/or appetitive
nature. DA depletion tends to reduce such locomotor activity, and has been shown to
reduce hyperactivity associated witbvelty. Some evidence suggests the shell portion
of the NAc is more important than the core region for exploration. Raised DA levels also
lead to increased responses to rewaeticting CSs. Disruption of NAc DA leads to
decreased hoarding behavidrat does not seem to disrupt the consumption of food.
When a choice is available of eating a default food for free or having tedes®s for a
better food, NAc (core subregion) DA disru
working for the betterdod (Sokolowski & Salamone, 1998)This suggests that NAc DA

may stimulate instrumental responding, th& Bredicting reward facilitate responding
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through a ventral striatal pattay. NAc DA also seems to be involved with learning and
performance of active avoidance behaviors. VTA activation of the accumbal circuit
appears to be sufficient to allow Pavolvian@$incentive learning, though other
pathways may allow Pavlovian leang as wel(Fields et al., 2007)

In most of these cases, it is not clear whether the increases seentiertarigA
concentrations are caused by enhanced DA cell firing, or by glutamatergic stimulation at
DA targets. (Fiorillo et al., 2003)presents a case, however, where DA cell effects are
involved. As Figure 1.9 shows, under Pavlovian situations, the dynamics of theatemse
of DA cell firing seems to be affected by how probable the reward delivery is. A
ramping up of DA cell activity iseen after the phasic onset spike occurs related to the
CS. This ramping up is terminated when the reward is delivered and/or the CS is offset.
Interestingly, the rate of ramgp seems to correlate with not the probability of reward
delivery per se, butather with the uncertainty on whether the reward will be delivered or
not. The rampup is maximal when p = 0.5, and minimal either whenp=0orp = 1.

The cognitive/behavioral function of this signal and the potential mechanism
allowing the uncertaigtrampup response are unclear. Why should the tonic DA signal
be maximal in more uncertain reward conditions? In the case of Pavlovian situations, it
doesndét seem to make much sense, except
reward predictiorerror estimatior§Schultz, 2007) Schultz(2007)points out at there
have been difficulties detecting this uncertairgiated response famstrumental cues.
However, such an uncertainty signal might be functionally useful during instrumental
tasks to signal when it might be useful to try a novel response behavior. Presumably,

under conditions where the animal is habitually performing ¢ineect response, p = 1,
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and it is less desirable to try new behaviors, so it would be advantageous for the DA
signal to not increase over baseline. On the other hand, if p = 0, it means the animal
probably hasndt been r ewafardseidisliketyto meamy be ha
that there is no useful relationship between the CS and any useful R that might lead to a
positive O, so the animal should ignore the ineffectual S. But if the animal has been
rewarded on some occasions for respondinghbaits n 6t g o t-Rmapp;ng cor r ect
figured out yet, then 0 < p < 1, and it may be useful for the animal to try some novel
behavior to see if it improves its chances of success.

Assuming that reward uncertainty influences the DA signal according to the
above rationale, what is the likely afferent pathway allowing the ramexcitation in
the DA cellsd activity? Two l'i kely candi
cortex, which is considered a part of PFC, or the amygdala. Both of thesdavea
cells that selectively fire in response to cues that predict rewards or punishers. There is
evidence, also, of reciprocal connections of the cingulate cortex to(@ades &
Halliday, 1987) Section 1.2.4 will focus on the possibility of cingulate cortex
involvement which this dissertation favors as the likely pathway for representing
uncertainty/frustration.

One (lardto-test) hypothesis regarding the subjective experience correlating with
the uncertainty rampp is that the animal becomes increasingly frustrated/anxious as
time progresses in maximally uncertain rew
get ecited because there is no expectation of impending reward. If p = 1, the animal
doesnébét get excited enough to change its b

be rewarded. The ani mal i's maximally mot. i
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reward are Aup for gr apisdesireto dchrearnevelwayul d be
because, generally speaking, if an animal waits too long to act, the opportunity to engage
in the action that leads to reward will pass.

In short, it would evolutionarily adaptive for a brain to have a signal that activates
when a reward cue appears and ramps up as time goes by, finally shutting off when the
promise of reward goes away or after the reward has been gained. Such a sitghal wou
be strongest, not when rewards are most likely to be gained by the usual responses, but
rather when the novel behavior may be needed to determine what the best response is.

It is not immediately clear how the uncertainty measure would be calculated in
the neural circuitry, but it could involve having a predictor attempt to guess whether a
reward would or would not be delivered, each time a cue was presented. Another
pathway mapping a cue to an estimate of uncertainty would be trained by this predictor
pathway, with errors made by the predictive pathway increasing the synaptic weight
(LTP) and correct responses decreasing it (LTD). Reward delivery might inhibit the
output cell/s of this circuit, and disappearance of the cue would remove excitation from

the circuit.

1.2.3.7 Striatal DA Modulation

The dynamics of striatal cell activation by its afferents (cortex, thalamus, etc.) is
guite complicated because extracellular DA levels in the striatum modulate the dynamics
through both D1 and D2 receptor aetion(Grace, 2002) In the presence of DA,
medium spiny neurons have three possible s
i nactive and unresponsive to input, a inac

depolarized, but not firing, andantac ve Oup st at ed (Grilnerethi c h t he
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al., 2005) Either o6upd or O6downd states can | ac
hours(C. J. Wilson & Kawaguchi, 1996 D1 receptor activity seems to be required to
facilitate transiti on {Grilmenetal, 2D@bpNeuronsin at e 6
i nactive Oup aditleanore affereneagtivationeo indued to/firing. As
mentioned in Section 1.2.3.1, D1 agonism leads to an increase intsigmaase ratio of
striatal cell activity in the Go units, meaning weak input is suppressed (perhaps because
the cedbWwnistanedd, but strong input streng
60up gHemdneed Jpez et al., 1997) By canparision, D2 agonism in the NoGo
units is inhibitory(Hernandez.opez et al., 2000)and, moreover could inhidA cell
firing through D2 autoreceptor activation.

Neural plasticity in the striatum, particularly in the corticostriatal synapses, is
critical to the basal ganglia mechanisms of reinforcement learning. Both the Go and
NoGo pathways neddng-term potenation (LTP)3 increasing of synaptic weiglisto
allow the learning of response to stimuli, dodg-term depressiof(LTD)d decreasing
of synaptic weighi& to unlearn responses. Hefd®49)argued that, when two neurons
fire at (roughly, at least) the same time (an event referred to in this dissertation as a
Hebbian event their synaptic weights increased between them (LTP). However, there
al so needs-Heb bbe man ha a uslaarninglofaveights (LTD) w s
when the prepostsynaptic relationship is weak or otherwise functionally undesirable. It
would be functionally useful for systems of neurons to hawedwe-driven learning
(Almassy, Edelman, & Sporns, 1998; Sporns & Alexander, 26@2hanism whereby a

reinforcement learning signal could signal eiteeward or punisher and implement
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Thorndi kebs Law of Effect on the target
punishers trigger LTD on synapses where there have been Hebbian events.

While there may be many LTP/LTD mechanisms, dependent on tgoloof
the neurons, one weatllescribed hippocampal CA1 LTP/LTD mechanism involving
NMDA and AMPA receptorgJ. Lisman, 1989; Malenka, 2002y be illustrative of at
least a wide class of LTP/LTD mechanisms. Calcium iofj@&@ncentrations in
postsynaptic spines malgtermine whether the synapses there are weakened,
strengthened, or kept at the same weight. At zeféd®acentrations, there is no
plasticity (LTP or LTD); at moderate concentrations, LTD; at larger concentrations, again
no plasticity; at larger conctations, LTP; and finally at huge concentrations, L(OD
Lisman, 1989) C&"ion concentration is mostly determined by activation of NMDA
glutamate channels. These tend to be inactive, except when the cell is highly
depolarized, and when they are active, pebwih N& and C&"entry. Postsynaptic or
presynaptic activation alone may give rise to moderate levels’d€@acentration
leading to LTD, whereas simultaneous activation of the cells leads to High Ca
concentration and LTP. LTP potentiates glutargit AMPA receptors, which are
reactive to glutamatergic excitation, even when the cell is relatively hyperpolarized, and
LTD depotentiates them.

DA receptors may modulate this activity also. D1 receptors, for example,
potentiate NMDA action, wherea2Deceptors depotentiate it; and there are also direct
influences of the receptors on the activation of'@arrentSGreengad, 2001) The

complex striatal circuitry contains both D1 and D2 receptors whose activations may be
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driven by the extracellular concentrations of DA, so unraveling the effects of DA on LTP
and LTD is challenging, though much progress has been made.

Evidence from am vivo study suggests that striatal synapses engage in LTD by
default, when a Hebbian event is stimulated, but increased DA levels (dependent on D1
receptor activity) change this LTD to LTP instg&tynolds et al., 2001)Reynolds and
Wickens(2002)proposed that there is no LTP or LTD in the absence of a Hebbian event;
and thatin the presence of a Hebbian event, low levels of DA lead to LTD, high levels to
LTP, and intermediate levels to no change. They proposed that the high range
corresponded to the range of DA concentration experienced during phasic reward bursts,
that thelow range corresponded to the concentration during phasic dips, and the
intermediate range was the normal range of tonic concentration of DA in the absence of
rewarding or punishing events. The model in this dissertation follows this pattern with
the Gounits, but reverses the ranges for therB@eptor dominated NoGo units, i.e.,
making the low range the LTP zone, and the high range the LTD zone. Both the
theorized function of the NoGo units and recent cellular mechanisms data support this.

Very recenty, Shen and colleaguéShen &al., 2008)have presented a review of
a battery ofn vitro experiment results revealing/reproducing a host of neurotransmitter
influences on LTP and LTD. Figure 1.10 presents their summary figures showing the
distinct sets of influences, DAergic aatherwise, on the Go and NoGo striatal units. In
the Go units, LTD is not dependent on DA receptor activation, depending rather on
glutamate and Cav 1.3 (a type ofype C&* channel) activity, as well, and
endocannabinoid activity. LTP, however, igpdadent on D1 and NMDA receptor

activity. At extremely low DA levels, then, LTD activity would be expected to
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predominate. At intermediate (tonic default) levels, the low affinity D1 receptors may

begin to activate enough for the LTP and LTD effectsatacel each other. At high DA

levels, the LTP effect would be strongly potentiated. In the NoGo units, however, LTP

does not depend upon DA activity because an adenosine receptor, rather than D1, is
responsible for the actions of the LTP mechanism. Hewekie LTD mechanism is like

the LTD mechanism of the Go units, but additionally requires D2 receptor activation. So,

at extremely | ow DA levels, we should have
LTD effect should perhaps cancel the LTP effaoq at highest levels, the LTD effect

should dominate. None of the LTP or LTD mechanisms would be engaged, however, in

the absence of a Hebbian event.

1.2.3.8 Prefrontal Cortex DA Modulation
The anatomical circuitry in PFC is vastly different from tbéathe striatum and
this may result in different mechanisms and dynamics of DA modulation of PFC
activation and plasticity. As already mentioned, there are far more D1 than D2 receptors
in (primate) PFCGLidow et al., 1991and PFC lacks DAT with DA reuptake regulated
instead by NE reuptake(&race, 2002) Most of the D2 receptors are located in layer V
of the frontal, parietal, and occipitatimate cortex, suggesting D2 may regulate cortical
output(Lidow et al., 1991) In human PFC (BA 9), D1 receptors seem most concentrated
in layer V (Lidow et al., 1991)
Like striatal cells, (layer V) pyramida
statedn vivo(B. L. Lewis & O'Donnell, 200D Default firing consists of alternations
bet ween the two states, with some firing d

thalamic activation seems to trigger the 6
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isinvolved. VTApulsesthu |l at i on can prolong the Oup
seconds, and this seems to depend upon D1 receptors because D1 antagonists inhibit
DAergic effects. D1 potentiates NMDA channel activity while mildly suppressing non
NMDA glutamatergic actity (Seamans, Durstewitz, Christie, Stevens, & Sejnowski,
2001) Since NMDA is only active at higheegolarization, switching the balance of
glutamatergic response from AMPA channels to NMDA channels leads-toddiilated
increase of signab-noise ratio responséAshby & Casale, 2003)There is also,
however, evidence that D2 receptor activation may lead to decreases in PFC cell firing in
layer V PFC neuron&ulledge & Jaffe, 1998)

D1 receptor activity is apparently important for proper working owmnfunction,
as both too little or too much D1 receptor activity can disrupt working memory
performancgZahrt et al., 1997) Working memory may be ediated by the D1 receptor
stabilization of recurrent excitation in the deep layer (e.g. layer V) PFC pyramidal cells
(Brunel & Wang, 2001; Durstewitz, Kelc, & Gunturkin, 1999; Durstewitz.e8DO0;
Gao, Krimer, & GoldmasRakic, 2001) Hypo-DA is likely to disrupt the NMDA
channel activity that is used to sustain the recurrent excitation, whereas#ypeay
potentiate GABAergic interneurons which also have &dptorgBrunel & Wang,
2001; GoldmasRakic, Muly 11, & Williams, 2000) The PFC extracellular level of DA
may thus control the maintenance of working menfBuyrstewitz et al., 1999pand the
author of ths dissertation in previous work has suggested that this extracellular DA level
may be locally controlled by glutamatergic activation (by other PFC cells) of the terminal
boutons of the VTA cell§Chadderdon & Sporn2006) Frank and colleagué€Brank,

Loughry, & O'Reilly, 2001; O'Reilly & Frank, 200@ave suggested that the basal
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ganglia may provide a dynamic gating mechanmsnengaging and disengaging working
memory. Perhaps this gating mechanism might regulate the extracellular DA levels in
the target PFC zones, allowing multiple working memory traces to be maintained through
dopamine stimulation, and released eitherugtoturning off of the bouton stimulation

of DA release, or perhaps direct Bdiated NoGo inhibiting of the working memory

PFC regions.

DAergic modulation of synaptic plasticity in PFC is complex and still not well
understood, though much data has bedlected(Seamans & Yang, 2004)Inin vitro
PFC brain slices with depleted extracellular DA, DA seems to induce LTD in stimulated
layer V cells(Law-Tho, Desce, & Crepel, 3%; Otani, Blond, Desce, & Crepel, 1998)

This seems to depend upon DA receptors, and groups | and Il metabototropic glutamate
(mGIuR) receptors, but not necessarily NMDA recep(@tani, Auclair, Desce, Roisin,

& Crépel, 1999) However, when the PFC slices are
40 minutes, NMDAdependent LTP is induced instedd. @D when the PFC neurons are
stimulated(Matsuda, Marzo, & Otani, 2006 HippocampaPFC synapse NMDA

dependent LTP appears to depend upon D1, but not D2 rec@ptoden, Takita, & Jay,

2000) Maintenance of either LTP or LTD in layer V PFC neurons appears to depend on

D1 receptor activatio(Huang, Simpson, Kellendonk, & Kandel, 2004)

Together, this data seems supportive of a DA control of LTP and LTD which is
similar to that of the striatal Go cells (see Figure 1.10 (top)), except LTD depends also on
DA receptor activatin. It would be expected, then, that zero concentration of DA would
disable either LTD or LTP. Low extracellular levels of DA such as occur when DA

depleted PFC slices are bathed in DA would lead to LTD. Under high extracellular DA
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conditions, howevell, TP would occur. It may be the case that intermediate levels of DA
would lead to cancellation of the LTP and LTD effects. More studies need to be done to
test these hypotheses.

In the model in this dissertation, DA sigriatnoise modulation of basal BF
activation is not modeled. LTP and LTD in model frontal cortical units are regulated
using the same mechanism that theddinated model striatal Go cells use. As will be
discussed in Sections 4.4 and 4.5, DA modulation of working memory is not mhodele

though this would be a natural extension for future research.

1.2.3.9 DA and Response Vigor
The postsynaptic effects of DA on the excitability of its targets, such as the dorsal
and ventral striatum and PFC, lead to a role in modulaigny of respose(Niv, Daw,
& Dayan, 2005; Niv, Daw, Joel, & Dayan, 2006)iv and colleagues suggest that the
tonic DA signal encodes ttagportunity cosbf inaction which is similar and
conceptal 'y related to this disseorientadti onds pr
motivationo. (60pportunity costdé in a ter
might have been gained by making an alternate choice.)
The level of DA often serves to séetlevel of effort the organism is willing to
exert for rewards in its environment. As mentioned, the ventral striatal (nucleus
accumbens) extracellular DA levels seem to correlate with exploratory activity motivated
by drives, reward, and/or novelty cuesd sometimes activation of conditioned
avoidance behavioi§ields et al., 2007; lkemoto & Panksepp, 1998htagonism of
DA can lead to reduced stimutgsed instrumental behavi@ickinson, Smith, &

Mirenowicz, 2000; Ikemoto & Panksep@®99). Within the NAc, lesions to the core (but
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not the shell) lead to impairment of fixedte responding (for example when an animal is
rewarded for every 3rd lever press), and also lead to decreased working for a more
desirable food when a less desile food is made immediately availab&okolowski &
Salamone, 1998)DA effects on the dorsal striatum can be ascertained by looking at the
effects of earlystage Parkinsonismrgie the SNc cells, which innervate the dorsal
striatum, are the first die ofCools, 2006) DA depletions in PFC, as mentioned, as well
as great excesses, leads to failures of working me(@atyrt et al., 1997) Similar to the
findings of Sokolowski and Salamone in the NAc, DA concentrations in ACC seem to be
important for the choice of higtost, highreward actions vs. lowgost, lowefreward

options with D1, bunot D2, receptor antagonists decreasing the performance of the
highereffort behavior{Schweimer & Hauber, 2006)Generally speaking, depletions of
DA lead to hypefunctionality in their target pathways, and the specific consequences of
that hypefunctionality depend on the targét.e Moal & Simon, 1991) But t may be a
valuable unifying hypothesis to suggest that thedpaeDA signal is a measure of
activity-oriented motivation or opportunity cost, with the caveat that glutamatergic
stimulation of extracellular DA release can lead to differences of DAttaxgeacellular
concentrations in the face of the same DA cell firing pattern, meaning, for example, that
PFCGmediated working memory might be at a given time more potentiated than NAc

mediated exploratory motivation. Thus, the DA cell (SNc/VTA) signabbees a

1]

global 6 motivation signal which is modifi

1]

|l ocal o motivation signal s.
Results of the model in this dissertation will mainly be compared (in Chapter 3)

with data related t o sRhostimiulantsusen the forthersa as e (
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canonical example of DA depletion (hypA), whereas the latter is an example of
excess DA activity (hypeDA). The remainder of this section will consider the vigor
modulating effects of hypand hypeiDA, whereas Sgtion 1.2.3.10 will consider the
effects on reinforcement learning.

Parkinsonds i s n-DAlesioneoftieISMc, mtoftehat i ¢ hypo
progressive disorder in which the dopaminergic neurons in the midbrain nuclei gradually
die off, adding new sympins to the disorder as damage spreads from SNc to VTA,
spreading DAergic denervation from the dorsal to the ventral strigfowls, 2006)

Thus, the motor striatum is affected first, then the associative striatum, then finally the
limbic striatum. In the striatal D#argets affected, the Bdominated Go pathway will

become hypective, and the D2 NoGo pathway will become hyper t i ve, alt houg
becoming apparent that the NoGo pathway, in particular, suffers a great deal of dendritic
spine loss, probably due to derately high NMDAstimulated C& concentration which

leads to chronic LTDay et al., 2006; Gerfen, 2006 he expectation, then, is that

activity mediated by dorsal striatum should fail first, including motor program activation

in the motor striatal loopsg&ding to the classic motor symptoms of delayed reaction

time and slowed moveme(BauntlettGilbert & Brown, 1998; Muller et al., 1999;

Schultz et al., 1989)Correspondingly, delivery of both D1 and D2 antagonists in a

primate reaction task has been shown to slow reaction(iveed & Gotl, 1998) As the
disease progresses and damage spreads towards VTA, the associative BG circuits should
begin to be affected, leading to executive/cognitive control dysfundifnk G. Lewis,

Dove, Robbins, Barker, & Owen, 2003; Woods & Troster, 20@3ally, when VTA

and limbic striatum are affected, difficulties should be observed involving incentive
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learning and exploratoryride. As damage to striatal DA innervation is uneven, the
effects of L-dopa treatment of PD become uneven, potentially leading to-DAen the
striatal pathways that the primary disorder has yet left undan{@ypeds, 2006) It is
therefore useful, in simulationadeling of corticostriatal function, to model distinct
corticostriatal pathways, and this dissertation takes this approach. Selectivemnypo
hyperDA effects may be manifested independently in different pathways which
complicates consequences of glothalg delivery.

The effects of two psychostimulants are considered as models ofDyperthis
dissertation: cocaine and amphetamine, although studies have also been done using D1 or
D2 agonists. Both cocaine and amphetamine suppress the dopaminerteari3AT,
leading to reduced reuptake, and therefore increased extracellular concentration, of DA in
the striatum(Grace, 2000; Saunders et al., 2000Jhereas cocaine inhibits DAT
activity, amphetamine also promotes cellular internalization of DAT recef@arsders
et al., 2000)and stimulates DA release from DA terminals in SNc and \{Bénardini,

Gu, Viscardi, & German, 1991; Pifl, Sitte, Reither, & Singer, 2000; Saunders et al.,
2000) In a seemingly paradoxical way, low dosages of psychostimulants can actually
suppress DA cell firing, which perhaps explainsvisychostimulants may have
therapeutic effects for attention deficit hyperactivity disorder (ADHD). However, this is
explainable by the fact that there are inhibitory D2 autoreceptors on the DA terminals
providing negative feedback on DA cell firifGrace, 2000Q) In fact, when D2 receptors
are bbcked, the inhibitory effects of-Bmphetamine go away, leaving a net excitatory
effect for the drugShi, Pun, Zhang, Jones, & Bunney, 2000hus, when interpreting

psychostimiant effects, it is necessary to recognize that low dosages may actually lead to
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net inhibitory effects due to presynaptic D2 effects, whereas higher dosages lead to net
excitatory effects due to postsynaptic effd€isank & O'Reilly, 2006) (By contrast,

delivery of antipsychotic D2 antagonists, can lead to DA excitation at low dosages, and
inhibition at higher dosages.)

Psychostimulants such as cocaine araniphetamine have been shown to
facilitate reactionime in both primate§Hienz et al., 1994and humangHalliday et al.,
1994) In rats, subcutaneous amphetamine injections tend to decrease frequency o
behaviors like grooming, lying, and standing still, and increase behaviors such as
sniffing, snout contact, and slow and fast locomofGarr & White, 1987) In the same
rats, direct amphetamine injection into nucleus accumbeds teanuch of the same

changes, whereas fewer effects are observed in dorsal striatal injections.

1.2.3.10 DA and Reinforcement Learning

In addition to effects on response vigor, DA has many effects on reinforcement
learning. Given the LTP and LTD effegbredicted in Sections 1.2.3.7 and 1.2.3.8, we
would predict that extreme hyddA would lead to LTD in the striatal Go cells and PFC
cells during Hebbian events, whereas hypérwould lead to LTP. On the other hand,
i n striatal N o Gypo-DA ¢ollehdstq LTRy and hypdeAxd@leadto  h
LTD. This suggests a set of hypothesis about the effects of DA reward phasic bursts and
punisher phasic dips. Reward bursts during Hebbian events should effectively reward
striatal Go and PFC, but punish NoGynapses. Punisher dips during Hebbian events,
on the other hand, should punish striatal Go and PFC, and reward NoGo synapses. In

accordance with these predictions, a recent computational model in conjunction with data

taken from human medicatedandne d i cat ed Par ki nsonds patier
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unmedicated Parkinsonism (which would be a chronic Hypacondition) correlates

with an emphasis on punishment learning at the expense of reward learning, whereas L
dopamedicated patients (which may be in géyDA condition at times) often have an
emphasis in reward learning at the expense of punishment le@fnar, 2005; Frank et

al., 2004)

What particular learning is potentiated or depotentiated would depend on the
particular DA target or targets affected. Inthe case of {yppsuch as occurs in
Parkinsmism, motor learning would be expected to be impaired in the early stages when
the motor (i.e. most dorsal) striatum is most affected. Accordingly,-f@hbiiation in
motor tasks is impaired by dopamine depletion of the dorsal strigtauane et al., 2005;
Robbins et al., 199(Gs well as selective lesions of dorsolateral striafdim et al.,

2004) Instrumental conditioning is impaired by lesions to the dorsomedial str{atimm
Ostlund, Knowlton, & Balleine, 2009nd there is evidence that reversal learning is
impaired when DA is depleted tlegiO’'Neill & Brown, 2007) Procedural learning of
cognitive tasks is also impaired in BBaintCyr, Taylor, & Lang, 1988yvhich would
probably correlate with damage to some of the prefrontal corticostriatal pathways.
Pavlovian and instrumental learning are both impaired when ventras(Na\c) DA is
depletedParkinson et al., 2002; SmitRoe & Kelley, 2000)

In determining the likely effects of hyp&A, the first thing to note is that
psychostimulants such as cocaine and amphetamine can act as primary reinforcers for
instrumental behaviors, as has been evidenced by experiments where rats learn to lever
pressfor selfdelivery of drugs into medial NAc shell and medial tubercle portions of

ventral striatun{lkemoto, Qin, & Liu, 2005) As a lypothesis to be tested, it may be
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proposed that chronic hypeoncentrations of DA are likely to lead to a state of chronic
spurious reward reinforcement in the affected pathways. It would be possible, for

example, for the organism to accidentally ledma ¢orrect SR mapping during initial

training, but it would also be likely for the organism to learn an incorrect fiRst S
mapping i f the organism Atriedd the wrong
organism is under a chronic reward reinforcenstésite. Moreover, unlearning of an

incorrect mapping, i.e. reversal learning, would be difficult during a chronic {iyper

state. In fact, reversal learning impairment has been demonstrated for both cocaine
(Jentsch, Olausson, de La Garza, & Taylor, 2@0@) Damphetaminéldris, Repeto,

Neill, & Large, 2005)delivery in monkeysiad rats.

1.2.4 Anterior Cingulate Cortex

A number of computational models of basal ganglia learning treat the basal
ganglia as an actaritic model(Joel, Niv, & Ruppin, 2002) The model in this
dissertation is an example of this, possessing an actor pathway, correspondingstd a do
striatal pathway, and a critic pathway which models, albeit in a +sinsplified fashion,
the influence of the dopaminergic nuclei. One question that remains regarding actor
critic systems, however, is, How does the actor manage to initially chHumserrect
behavior, so that it can be fAstamped inodo b

there is likely to exist an additional corti®G pathway (or more than one, perhaps) that

i's involved with exploratibabbkeéécpabhway.
pat hway i s engaged when the organism is #fs
somet hing, anythingo to change its situat:.i

running through the ventral striatum and anterior cinguateex.
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1.2.4.1 ACC and Willed Behavior
The human anterior cingulate cortex (ACC) consists of BA 24, 25, and 32 (see
Figure 1.1), extending through the medial cortex surrounding the corpus cafldaus)
2001) As it has reciprocal conngans with the (rest of) PFC, efferents to the motor
cortex and even the spinal cord, and afferents from numerous limbic and brainstem areas,
it is in a crossroads location between neural areas for representing drive/arousal state,
cognition, and motor cdrol (Paus, 2001) Paus therefore suggests that it may be in a
position to map intentions into actions, i
But what distinguishewilled control of action? Norman and Shalli#986)
suggest: nAEXxper idiferentisaatd of tgsks appeanta neduiee deliledate
attentional resources. These tasks fit within the following categories:
1. They involve planning or decision making
2. They involve components of troubleshooting
3. They are illlearned or contain novel sequesf actions
4. They are judged to be dangerous or technically difficult
5. They require the overcoming of a strong habitual response or resisting
t empt 4pp.i28)n. O
It is intuitively the case that, when a person is initially learning a task, such egdriv
car, a great deal of conscious attention is devoted to controlling the sequences of
behavior, but as the learner becomes more experienced, less conscious focus is necessary
and more of the task performance kdcomes i
that consciousness is chiefly engaged when a person is faced withr@utioa problem

that needs to be solvéiflinsky, 1986) Conscious will is essentially a flexible problem
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solving method that is engaged when normal, habitual, largely unconscious behavior will
not do.

There are, in fact, a number of neurological disordeasgeem to demonstrate a
selective impairment of willed control, and these involve damage to ACC and connected
regions. Alien hand syndrompatients have a limb that seems to spontaneously engage
in grasping and manipulating behaviors without their condran, Giovannetti,

Buxbaum, & Chatterjee, 2006)Jnilateral (contralateral to the alien limb) damage to

ACC and neighboring supplementary motor area seems to be responsible, and the likely
mechani sm i s t haotlowihghweltle@draed autcomatized madigulatios  f
patterns that have become divorced from inhibition by the circuits that mediate willed
movement control. There is evidence that a portion of ACC may be involved in
discouraging risky behavior such as drugsagéishbein et al., 2005)An fMRI

experiment using a counting Stroop task shows that patients with attention
deficit/hyperactivity disorder (ADHD) have bilaterally less activation of ABUsh et

al., 1999) Reduced activity of ACC has also been associated with mental fatigue in
normal human EEG subjedtisorist, Boksem, & Ridderinkhof, 2005)

However, unilateral damage £CC or to the connected corticostriatal circuitry
can induce a much more serious dysfunction of afililia (Grunsfeld & Login, 2006;

Tekin & Cummings, 2002) Abulia is characterized by il
purposeful behavioro with major @gapdnpt oms i
sustaining purposeful movements; (2) poverty of spontaneous movement; (3) reduced
spontaneous speech; (4) increased respiimseto queries; (5) passivity; (6) reduced

emotional responsiveness and spontaneity; (7) reduced social interaction; eautli¢@
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i nterest i n (Vijagammghavam lKrishhamooetisy, Boiown, & Trimble, 2002)
Bilateral lesions of ACC lead to an even more severe suppression of spontaneous
behaviorakinetic muti;;, whi ch involves fia wakeful stat
apat hy, muti sm and (Gruastekl & bofjin, AOO&) Importantly,i t i at i o
akinetic mutism can also be caused by damage to VTA and lateral hypothalamus, and in
this instance, symptoms have been improved by dopamine medifsitiéh Alexander,
2001) The abulia case discussed by Grunsfeld and L@§@6)suffered from damage
to the right caudate nucleus which &pof the frontesubcortical circuit including the
ACC. Patients given a bilateral anterior cingulotomy for pain tended to manifest abulic
symptomgCohen et al., 1999)

The above evidence suggests that there is a fisariioortical circuit (or set of
circuits) involved with the initiation of willed actiocontrol(Tekin & Cummngs, 2002)
This circuit includes ACC and ventral striatum (ventromedial caudate), and requires
DAergic activation from VTA. There is evidence in rat studies that effortful behavior
may require DA activation of D1 (but not D2) receptors in AGChweimer & Hauber,
2006) as wellas the previously mentioned dependence on ventral striatal DA
(Sokolowski & Salamone, 1998)Another study in rat medial prefrontal cortex (which
includes rat ACC) suggests that Bnd NMDA receptor activity is required for
appetitive instrumental (i.e.,-R) learning(Baldwin, Sadeghian, & Kelley, 2002)
Generally, it appears that the prelimbic area is invowigd learning of instrumental
contingencies (FO learning)(Cardinal, Parkinson, Hall, & Everitt, 2002While

prelimbic area is considered a separate region of rat medial prefrontal fronterat
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ACC (Uylings, Groenewegen, & Kolb,0®3), in cats, the area corresponds to BA 32
(Room, Russchen, Groenewegen, & Lohman, 1986jch in humans is a part of ACC.

Thus, a cingulostriatal circuit Ig&ely to be involved both with the cognitive
control of willed, effortful action, and with the learning of associations/mappings
between responsextions (Rs) and their likely outcomes (Os). Such associations might
either drive outcomgrediction (RO mapping) or motivated response selectiorRO
mapping) . A prevalent current theory of t
cells engage iperformance monitoringnd their activity influencegerformance
adjustmen{Ridderinkhof, Ullsperger, Crone, & Nieuwenhu2Z004) The performance
monitoring is chiefly implemented by ACC whereas the actual mechanisms of adjustment
lie in the lateral parts of PFC (dIPFC and viIPE&acDonald 1ll, Cohen, Stenger, &

Carter, 2000; Ridderinkhof, van den Wildenberg et al., 2004)

1.2.4.2 ACC and Consequence Monitoring and Prediction

ACC has ample anatomical connections from and to areas involvetbtioeal
appraisal and arousal, including the amygd¥lagt & Pandya, 1987the insula which is
believed to maintain a holistic estimate of internal homeostatic state of the body
(Augustine,1996; Craig, 2002)and midline thalamic nuclé¢Paus, 2001) ACC is also
one the most densely dopaminergically (from VTA) innervated regions in primate brain
(Allman, Hakeem, Erwin, Nimchinsky, & Hof, 20Q1])Interestingly, humans and great
apes alone seem to possess a typAdmandt neur o
al,2001) t he specialized function of these i s
striatum also projects to ACPaus, 2001; Voorn et aR004) Such connections, along

with connections to motor and prefrontal areas, would allow ACC neurons to monitor the
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consequences of behaviors as well as the current general state of the organism, and
accordingly trigger adjustments in motor behavior that might be more adaptive for the
organism. Moreover, parts of ACC connect with the hippocampal refjiogt &

Pandya, 19873upporting, perhaps, an ability of ACC to access/retrieve episodic memory
records. Episodic memory retrieval migiiow predictions of likely outcomes (success

or failure, reward or punishment) to be made based on the similarity of the current
situation to previous similar situations the organism has been in. Thus, ACC could allow
both monitoring and prediction obnsequences, and this information could drive
adjustments to ongoing behavior.

Consistent with the ACC6s connectivity,
of consequence monitoring and prediction assessments. Many studies have discovered
ACC monitoing of negative outcomg®idderinkhof, Ullsperger et al., 2004ACC
activity is correlated with the subjective distress component of(Paisner & Rothbart,

1998) Reduced rewarBush et al., 2002; Ito, Stuphorn, Brown, & Schall, 2003; Shima

& Tanji, 1998)or actual los§Gehring & Willoughby, 2002have been associated with

ACC activity. Response errors (the Aoops,
the kind of ACC activatio believed to be responsible for @mor-related negativity

(ERN) EEG signa{Bernstein, Scheffers, & Coles, 1995; Gehring, Goss, Coles, Meyer, &
Donchin, 1993) and losses also can trigger ERBEhring & Willoughby, 2002)

Response errors that relate to negatiegllfiack rather than setfionitoring also trigger

ACC activity (Amiez, Joseph, & Procyk, 2005; Ridderinkhof, Ullsperger et al., 2084)

popular hypothesis of ACC functionality, based on performance in tasks such as the

Stroop task, is that conflict of response tendencies is monitored by ACC activity
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(Botvinick, Nystrom, Fissell, Carter, & Cohen, 1999; Carter et al., 1998; MacDonald IlI
et al., 2000; van Veen, Cohen, Botvinick, Stenger, & Carter, 208&yvever, not only
errors and punishers, but also rewards, either expected or unexpected, may be signaled by
ACC activation(Bush et al., 2002; Ito et al., 2003; Niki & Watanabe, 1979)

Regarding prediction, much of err@nd conflictrelated activity may be
interpreted as involving ACC activation in the face of high risk of g&tman et al.,
2001; Brown & Braver, 2005)Brown and Ba v e (R0®3model suggests that phasic
DA punisher dipsnay train ACC cells to respond to stimuli/conditions that likely
correlate with impending errors. ACC activity may increase when the organism needs to
engage in error avoidance, for example by aborting the current befdeaigro, Foxe,
Molholm, Robertson, & Garavan, 2006ACC cells have been found that fire to the
degree that the organism expects/anticipates being rewg@tethra & Richmond,
2002) Volatility of reward(Behrens, Woolrich, Walton, & Rushworth, 20@#)
decision uncertaint{Ridderinkhof, Ullsperger et al., 28Pmay trigger ACC activity,
and these are essentially also predictions about outcomes. Probably related to this is the
fact that some ACC neurons have been found that fire when the organism has to perform
explorative behavior in order to find the seque of behaviors that will lead to reward
(Procyk, Tanaka, & Joseph, 2000)CC related activity has also been discovered under
conditions where the needed response or task i§Beager, Barch, GrgyMolfese, &
Snyder, 2001)

To summarize, ACC seems capable of detecting a wide array of conditions and
making predictions regarding consequences of behavior. While the findings above may

seem initially contradictory, the heterogeneous nature of ACC and the possibility of
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interspersd subpopulations of cells suggest that the area may indeed represent a wide
spectrum of (RO) associations. One possibility offered without folaw here, is that,

similar to the cellular organization of the striatum, there may be separat®D2
responsive cell s. The D2 cell s, as in Browr
phasic dips to represent estimates of ensk. The D1 cells, on the other hand, trained

by phasic bursts, would learn to represent anticipatory estimates of relaacd. The

D1- and D2trained cells could then drive behav&elective cells in premotor and

prefrontal cortex. The distinct roles of D1 and D2 receptors in ACC need to be more

closely investigated.

1.2.4.3 ACC and Response Modification

There appear toebin ACC separate regions involved in cognitive and emotional
processing where the most dorsal and posterior components (mostly BA 24) are
specialized in cognitive control and the most anterior and ventral parts (BA 32 and 25)
are involved in emotional ctmol (Bush Luu, & Posner, 2000)These parts seem to
compete with one another suggesting a mechanism by which major depression (which
has been correlated with hyperactivity in BA@&ayberg et al., 200%)can interfere
with cognitive control and cognitive control, on the other hand, can be used to dampen
depressioriGoldapple et al., 2004)In humans, the emotional (rostral) part of ACC has
been shown to be especially active in obsessbrapulsive disorder patien{Bitzgerald
et al., 2005)suggesting that overactivity in this area could trigger the kind of hijacking of
behavior by ritualistic response that is seen in these patients. The focus in this

dissetation, however, is on the cognitive control portion of ACC.
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ACC outputs to a number of areas, both cortical and subcortical, that might be
deemed output areas. There are reciprocal connections to other parts of PFC, including
dIPFC(Paus, R01)and the frontopolar cortex (BA 10Mufson& Pandya, 1984;

Petrides & Pandya, 2007)There are also connections to the skeletomotor neurons and
motor cortices, and the periaqueductal grey area (RR&)s, 2001 )a brainstem area
which is involved in motor expression of emotiosttegPanksepp, 1998)ncluding
vocalizations. As it is invokd in thalamocortical loops, ACC outputs to the ventral
striatum(G. E. Alexander et al., 1986; Voorn et al., 2Q@tpbably projecting, in part, to
both limbic and associative portions of the output BGl&i (Joel & Wener, 1994)

ACC projects also to the subthalamic nucleus (SI¥nteras, Shammadlagnado,

Silva, & Ricardo, 1990yvhich may provide a means for ACC to inhibit behavior, given
STNOG s thedasal gainglia actieselection circui{Frank, 2006; Mink, 1996) These
connections may allow ACC to exert a considerable influence on both speciieveiv
actiors and highefevel plans/tasks.

In corroboration with the above anatomical connections, evidence has been found
for ACC involvement in executive control. Some evidence suggests that the mechanism
by which ACC cognitive control operates is through ampidybiasing excitation of its
target areas, rather than, for example, direct inhibition of opposing beh@gprar &

Hirsch, 2005) ACC activity has been found in monkghima & Tanji, 1998and
human(Bush et al., 2002)esearch which selectively correlates with a future decision to
switch behaviors, for example, when less reward was received than expected. ACC
activity also is involved in response inhibition, for exade) in suppression of response in

Go/NoGo, or stogsignal task§Garavan, Ross, Murphy, Roche, & Stein, 2002; Magno et
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al., 2006; Ridderinkhof, van den Wildenberg et al., 200X C activity may need to be
engaged, also, for the organism to adapt to and select behadordiag to changing
reward contingencie@ennerley, Walton, Behrens, Buckley, & Rushworth, 20063
connection to hippocampus may allow, for example, reestimation of reward probability
given recentistory. Errofrelated negativity has been seen to precede more careful,
longer RT trial§Gehring et al., 1993)This suggests a role of ACC in raising the
threshold of action selection after an error has been madeeor thiere is more risk of
error or response confli¢Brown & Braver, 2005; Kerns et al., 2004; Ridderinkhof,
Ullsperger etl., 2004) Especially relevant to this dissertation is correlation of some
ACC cell activity at periods during tasks when the organism needs to discovee& co
response or sequence of responses througltatrédrror (Amiez et al., 2005; Procyk et

al., 2000) Explorative behavior (as opposed to exploiting behavior) is also believed,
however, to involve frontopolar corté®aw, O'Doherty, Dayan, Seymour, & Dolan,
2006; Koechlin & Hyafil, 2007) Given the involvement of ACC in tri@nderror, and

its connection to frontopolar cortékufson & Pandya, 1984)t may be hypothesized

that the frontopolar cortex could be the output region of an exploratory behavior circuit
consisting of ventral striatum, ACC, and FPC.

The model proposed in this dissertation hypothesizes an exploratory behavior
circuit such asutlined above which is engaged when an organism is frustrated with the
lack of current success at acquiring a reward. It is plausible, given the types of
conseguence monitoring responses seen already in ACC, that there might be cells there
that learn taepresent a dislike of not being rewarded and/or a prediction that reward is

not forthcoming without intervention. These cells might project to lateral PFC (including
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FPC)insuchawayastopseadma ndomly sel ect a planaror beh
how the noise is injected into the system (perhaps thalamic noise?). Such a circuit would
amount to a Obabbledé circuit that 1is engag

proceed.

1.3 Potential Contributions of Research

As Section 1.1.5 suggestedngputational modeling approaches may be of wide
ranging interest to both the theoretical and applied sciences because they embody and
suggest candidate theories of both principles and specific mechanisms of animal
cognition. The model proposed here shaqariolve of interest not only to those interested
in the study of animal behavior and cognition, but also to clinicians trying to understand
the likely impact of pharmacological interventions and the etiology of dysfunctions of
behavior and cognition, andsalto engineers and computer scientists trying to engineer

systems capable of flexible, adaptive behavior in aweald environment.

1.3.1 Neuroscientific Importance

While there has been a good deal of focus in the neurosciences on studying
functional nechanisms for visual perception or spatial localization, study of the
mechanisms of executive control (which includes TOBS) is still at an early stage. Itis in
some ways a difficult object of investigation for the empirical neurosciences because
diversebrain areas are involved and these may be a good deal less specialized in their
functionality than, for example, V1 and other early stage areas in the visual pathway.
Areas such as prefrontal cortex, basal ganglia, the midbrain DA nuclei, and anterior

cingulate cortex participate in a number of functional pathways, and the functional
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Amodul ed of executive control I's densely
which exert not yet wellinderstood influences on the control process.

Computational moels may serve as provisional theories to guide empirical
investigations and to give researchers a preliminary understanding they can use as a point
of departure. The proposed model will constitute a candidate explanation of the
functional relationships b&een TOBS/executive control, reinforcement learning, and
dopaminergic neuromodulation; and of the division of labor between PFC, basal ganglia,
ACC, and the DA nuclei in implementing TOBS. A comprehensive model, even if it is
ultimately incorrect regardg many of the particulars of mechanism, may guide
researchers by suggesting experiments and testable hypotheses.

The chief scientific benefit of such a model is probably its explanatory potential.
TOBS is a critical component of higher mammalian baedraand its investigation is at an
early stage. Integrative theories sucliMsler & Cohen, 2001)are useful in providing a
verbal and visual overview of how the different areas of brain may interact to produce the
comgdex functionality of executive control. Modeling research suctCeReilly &

Frank, 2006; Tagamets & Horwitz, 1998)d this dissertation may build dmese

theories and on recent findings in the empirical neurosciences, in order to propose some
specific mechanisms that might be operative. The empirical neurosciences then may
investigate which candidate mechanisms seem to be more likely. The varioeis mod

may then be refined according to later findings, until, ideally, there is a convergence on a
single stable explanatory theory that captures the actual mechanisms of executive

function.
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1.3.2Clinical Importance
The model proposed in this dissertatidue to the centrality of the brain areas
involved and the involvement of the dopaminergic system, may have implications for the
understanding of a wide array of clinical dysfunctions and for DA pharmacology. Frontal
cortex and anterior cingulate cortase, as reviewed in Section 1.2, centrally involved
with behavior, and activity in both of these areas is regulated by the basal ganglia and the
DA nuclei. Though there are many details that may need to be added to the model, it
may provide some initiahsights into the neurological causes of a variety of disorders of
behavior and cognitive initiation and control, especially disorders related te drypo
hyperDA receptor activity. In particular, this model may offer insights about the
different ways tht reinforcement learning and performance of@as&nted behaviors
may be disrupted by conditions such as Parkinsonism or psychostimulant intoxication.
Hypo-DA activity (due to DA cell death) is the cause of Parkinsor{iSools,
2006), and hypeDA conditions have len associated with ADH[Levy & Swanson,
2001) schizophrenigGrace, 1991; Yang & Chen, @), aging(Braver & Barch, 202),
mental fatigugLorist et al., 2005)and abulia and akinetic mutigid. P. Alexander,
2001; Tekin & Cummings, 2002)HyperDA conditions have been associated with
alcohol and psychostimulant intoxicatig@race, 200Q)ADHD (Levy & Swanson, 2001,
Zhuang et al., 2001¥schizophrenigGrace, 1991)and obsessiveompulsive disorder
and stereotypyBerridge et al., 2005)
There is here a seeming pasadhat some of these disorders are associated with
both hype and hyperDA. However, we may begin to resolve this paradox when we

consider the differential effects of DA surplus or deficit on different DA targets, a design
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step which this model has takeRor example, regarding ADHD, hyjigA activity in

ACC might interfere with cognitive focus by depleting the cognitive monitoring and
behavior adjustment circuitry of DA, whereas hypeXx activity in the ventral striatum

might lead to ADHD distractibilitysymptoms due to an increased bias towards

explorative behavior. On the other hand, major depression might be triggered by hypo
DA activation in ACC regions related to cognitive control, or hypéractivity in the

BA 25 region of ACC whose activity is ssciated with distress. Ultimately, it is

important to understand the varying causes that may lead to some of the same diagnoses
and symptoms, such that pharmacological or surgical intervention can be more
selectively administered. A major difficulty pharmacological treatments is that they

tend to have a more global effect than desired, activating or blocking receptors in other
brain areas besides the preferred targets (though the differentiation of DA receptor types
and development of receptspecifc antagonists and agonists has improved selectivity
greatly). What models such as the one proposed here suggest is that technology needs to
be developed that can selectively influence specific pathways. Means of selectively
tweaking DA activity in diffeent target regions could revolutionize clinical treatment of

a bewildering array of affective, cognitive, and behavioral disorders.

1.3.3 Technological Importance

While the benefits of a better understanding of human cognition and bases for its
dysfunction seem to be the most immediate interest for psychologists and neuroscientists,
there are other contributions to be made by modeling human cognitive processes.
Artificial intelligence (Al), which may be regarded as both adisbipline of computer

science (which is often considered an engineering discipline) and cognitive science
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(which is an interdisciplinary study of mind) both are deeply concerned with mechanism
as well as descriptive theory. Earlier Al approaches have drawn their inspiration from
automata theory, symbolic logic, information theory, etc., and were based on
mathematical or (artificial) technological metaphors of how animal cognition might
function. Periodically, there have been attempts to integrate concepts and metaphors
from the neurosciences into Al, but these explorations were done before neuroimaging
(aside from EEG) became commonplace and there have been considerable advances in
the functiomal understanding of the brain since the middle of the 20th century. Some Al
researchers had made wildly optimistic predictions about the progress that would be
made using the old metaphors, and these have not come to pass. While technological and
mathenatical metaphors may, in principle, arrive at designs for machines capable of
human intelligence, progress will be greatly expedited by incorporating the discoveries
and theories that come from the study of natural systems which have the benefit of
havingbeen designed over a period of millions of years by natural selection. Animal
brains are working exemplars of systems capable of conscious perception, and highly
complex and adaptive behavior.

The model in this dissertation presents mechanisms whpchsent advances
over what is yet the mainstream in robotics and Al. Reinforcement learning of behaviors
is an important advance. Much current robotics and Al work still involves-tadidg
of behavior or knowledge databases. This leads to robots#yaperform capably in
particular limited domains, but are unable to adapt to new conditions in that domain or

learn behaviors in other domains. For example, there now exist robots that-are pre

programmed with algorithms for vacuuming or mopping a flesoe(e i Robot 6 s web
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http://www.irobot.comfor descriptions and demo videos Roomba, Scooba, and other

robots), but they perform no other function, nor can they learn any other. It would be
better to have a more mitdy legged robot, equipped with manipulators, that could be
trained by its owners to vacuum the floor, or shovel snow in the driveway, clean the
sidewalks, or any number of other routine, unpleasant tasks. However, such a robot
requires a system capaloita much greater level of adaptation and flexible intelligence
than what currently exists. Reinforcement learning is one missing component.

Robots that possess a developmental learning period like young animals have, as
opposed to being manually codedperform behaviors, will be capable of far more
general and opeanded behavior adapted to more complex and changing environments
(Weng et al., 2001) The addition of reinforcement learning mechanisms that allow the
learning of behavioral sequences and other mechanisms that allow more than one task
representation to be independently maintained, needs to be implemented for a robot
capable of learningammplex tasks, but the model proposed in this dissertation should at

least provide a template for the learning of simple-step SR tasks.

1.4 Overview of Dissertation

This chapter has sought to explain the area of investigation of the dissertation an
the overall method of inquiry (Section 1.1), to provide a background neuroscience
perspective on the modeling task (Section 1.2), and to express likely contributions of the
research (Section 1.3). It remains to explain the simulation model in detaptéCi2),
to present simulation results and compare them with effects seen in the empirical
neuroscience literature (Chapter 3), to lay out the theory suggested by the model (Section

4.1), discuss predictions the model makes (Section 4.2), to reflect @ortributions
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and limitations of the research (Sections-4.8), and to suggest future research in

continuation of the work of this dissertation (Sections 4.5).
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Chapter 2: Simulation Method

2.1 Modeled Environment and Organism

At the heart of thislissertation is a computational simulation model of task
learning and performance, implemented as a set of (Mathworks) Matlab scripts running
in a standard Windows/PC environment. Figure 2.1 shows the overall functional
structure of this model: that ofcagnitive agent acting in a simple environment. The
overall approach involves simulating, at v
brain, body, and environment, and how these interact during situations where the
organism is required to perform piaular tasks. The initial goal for the author was to
develop a neurocomputational model of task learning and performance that was
consistent with the neuroscience literature as outlined in Section 1.2. This involved
testing the model on the learning aetearningof SR t ask set s, starting
state where the model made no responses to the stimuli, but was rewarded for correct and
punished for incorrect responses. Once this model was capable of learning the task, it
was then tested under i@us simulated conditions of dopamine surplus and deficit,
under the stages of initial learning, learned performance, and reversal learning, so that the
effects of DA manipulations on task learning and performance could be observed.
Together, the model @nitecture and the testing results embody a preliminary theory of
TOBS (which will be discussed in Chapter 4).

The organism and environment depicted in Figure 2.1 are extremely abstracted.
The organismds fAbodyo is e pableafpannnglefty a f 1 o
and right and tilting up and down across a

(represented as black in Matlab) upon which a single colored square (Red, Green, Blue,
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or Yell ow) may be projecemwinmentiBwaedsdaii nvi si b
punishes this camera organism according to whether it executes a Nod (sinusoidal tilting)
or a Shake (sinusoidal panning) after it is presented with a particular color. The
organism, however, al so hwithbriaf (simélaea)tomeswh i c h
corresponding to the twelve notes of a musical chromatic scale:
C,Db,D,EDb,E,F,Gb,G,Ab,A,Bb,B. It can be rewarded with simulated food deliveries or
punished with simulated shocks, and it maintains an awareness of its istateaif
hunger and/or satisfaction. The system is roughly analogous to an immobilized primate
facing a computer monitor and being rewarded with fruit juice when it makes a proper
saccade response to a stimulus presented on the monitor. The additiolitarfy tones
and punishers creates a potentially more general and flexible system for testing task
learning and unlearning mechanisms.

The Abraino of t he c eogndiveprocessitggadrai sm cons
motor controlmodule. The cognitive prossing module, given the current visual,
auditory, visceral, and reward/punisher inputs, will select an appropeasevior
commandor implementation. There are three such commands: Track (the default) in
which the camera tries to center its cedensiive (16x16 pixel) fovea on any stimulus
presented in its (64x64 pixel) colarsensitive peripheral field, Nod in which the camera
centers itself in the arena and tilts up and down twice, and Shake in which the camera
centers itself in the arena and paafs &nd right twice. Potentially, simultaneous
commands may be issued; for example, Nod and Shake may occur together leading to a
two-dimensional oscillatory movement. The motor control module implements the

mapping between active behavior commands bednimediately appropriate tilt or pan
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behavior/s. It is the cognitive processing portion of the model that will mainly be
described in Section 2.3, as it is the portion which is implemented with discrete
neurocomputational units rather than being sinealahrough more basic procedural

algorithms.

2.2 Task/Trial Structure

The model has, designed into its structure, representations of distinct colors (Red,
Green, Blue, Yellow) and distinct tones (C through B on the chromatic scale), and also
representabin of three behaviors (Track, Nod, Shake). Working memory traces are
implemented in a rigid fashion with tone working memory always remembering the last
heard tone and color working memory lasting from the time the color is seen in the
or gani s maila tinie sholydbefarenthe occurrence of the next color square
presentation trial (see Section 2.3.5). However, there are no representatashswdr
se wired into the model. Rather, based on working memory traces of tones and colors,
the simulatd organism must learn what stimuli might represent different tasks and what
mappings are appropriate between the combination of task and current stimulus to the
correct behavior response. Through rewards and punishers, the model is able to learn
such mapmgs and unlearn them in favor of new mappings.

Prior to testing of the model under hymmd hypetDA conditions, the model
was tested under a fAfull 0 -BELE& asxl®ED consi
SELECT. The start of these tasks are respegtsighaled by the occurrence of a C or
an Eb tone. During a mudtrial run, a random C or Eb tone is chosen aftér 1
(randomly selected) trials under a current task. For each trial under a task, either a Blue

or a Red square is projected randomlymlaace somewhere in the
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By default, the model is always executing a Track behavior command which causes it to
foveate on any object presented in its retina. After it has foveated the object so that it can
see its color, however, tieo d e | i's expected (by the #fAinvi s
Shake response. Under the BLISELECT task, the model is required to Nod in
response to Blue squares and Shake in response to others (Red only because only Blue
and Red were used in the résidocumented in this dissertation). Under the RED
SELECT task, the model is required to Nod in response to Red and Shake in response to
other colors (Blue). The model is rewarded for a correct response, punished for an
opposite response (Nod insteadStiake or vice versa), and neither rewarded or punished
for ignoring the square (and simply fixating on it, instead, according to the dictates of the
default Track behavior).
Essentially, training of the model consists of presenting a lot of trials toddelm

unt il its |l earned performance is satisfact
set (using Blue and Red squares and C and Eb tones), it has learnecSBELBET,
RED-SELECT, and the cues (in this case, auditory) which signal these. Amatherf
analyzing what is learned is to say that the model has learned mappings of four (stimulus)
conjunctiongo behaviors, as follows:

1 C AND Blue-> Nod

1 C AND Red-> Shake

1 Eb AND Red-> Nod

1 Eb AND Blue-> Shake.
The first two conjunctions contain the learning of the BLBELECT task, and the latter

two the learning of the REISELECT task. As will be shown, the model is capable of

75



learning these four conjunctions, although there are learning capacity issuebl|yproba
due to the small number of neural units allocated in the model.
The model passes through three simulation phases. In the firsgithieg phase,

the model is presented with the four conjunctions of the full task set until it has learned
all. Inthe second, thmaintenancghase, the model is simply tested for a few runs on a
random sequence of conjunctions to see if the model retains its correct responses. Then,
finally in areversalphase, the model is trained on the reversal task sethedgllowing
four conjunctions:

i C AND Blue-> Shake

1 C AND Red-> Nod

9 Eb AND Red-> Shake

1 Eb AND Blue-> Nod.
Essentially, the C tone switches from being a signal of BISHEECT to being a signal
of RED-SELECT. Likewise, Eb switches from being a signaR&D-SELECT to being
a signal of BLUESELECT. The model, trained under the initial task set, has to unlearn
the old conjunctions and relearn the new ones. As will be seen, it is successful at this,
and, although it is not documented in the dissertati@niodel is also capable of
relearning the old task set after the reversal task set is learned. The results presented in
Section 3.1 show the performance of one instance of the model (each instance being a
different randomized set of initial model weiglifsthe neural units). Although
exhaustive data was only collected and analyzed for one model instance (because of the
immense length of time for training and the volume of data generated), performance

appeared to be typical, given adequate model tratmmgy
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As will be explained in further detail in Section 2.3.14, a simplified task set was
used for the hypoand hypetDA tests so that data could be collected for several model
instances, and statistics could be collected. To summarize, howevengtrai
maintenance, and reversal phases were done for multiple DA conditions, but only two
conjunctions were used: one conjunction, C AND Bki®&lod, in the training and
maintenance phases, and the other, C AND Biu8hake, in the reversal phase. The
likely effects of DA conditions on the performance of the model on the full task set can
be inferred from understanding the effects of the same conditions orctmguhction
task sets.

Figure 2.2 shows the (overall, correct) performance of the modeltatiies been
trained on the full task set (and therefore is a sneak preview of the results presented in
Section 3.1.1) , and also presents a typical testing (as opposed to training) simulation run.
In a simulation run (testing or training), there are @,8inulation iterations with each
iteration representi ng irmeuwghIlsyo 1t0hOatmst hoef
a period of 100 s. Within a run there are trial blocks of (randor8yjrials each. At the
beginning of each trial block, amdom C or Eb tone (500 ms: 5 iterations) is presented
which selects the reward/punisher contingencies (e.g. BEHEECT vs. RED
SELECT), followed by a 2.5 s (25 iteration) delay period. Each trial within a block has
the following temporal structure: algd or a Red square is projected randomly to a place
somewhere in the model 6s 64x64 retina for
(25 iteration) delay period follows the visual stimulus offset. If a response is made, either
a reward or a pusher of 500 ms (5 iterations) is delivered, when the Nod or Shake

execution is almost completed. The Ainvi
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responses made between the onset of the colored square and a period 1500 ms (15
iterations) afterts offset. No partial trial is allowed to happen near the end of the
simulation run; no new stimuli are presented if sufficient time does not remain for a
whole trial. Each simulation run typically consists of about 15 trials.

While testing runs were deribed above, simpler simulation training runs are
used for training the model in the training and reversal simulation phases. Each training
run maintains the same general structure as the testing runs described above, but only one
color and one tone aresed in a given run, with the result that the model is only trained
on one conjunction during any run. In the training phase, the model is trained, one
conjunction at a time; generally the model learns a conjunction in 1 or 2 runs, though
sometimes morare required. After all 4 conjunctions have been trained, a test run is
done to verify that all conjunctions remain learned. Often, in fact, some conjunctions
have been unlearned due to interference effects (described in Section 3.1.1.2), so another
iteration of training is done on the failed conjunctions, followed by another test run to see
if there are any remaining failing conjunctions. This process iterates until the test run
reveals that all conjunctions have been learned. Finally, a specialfkigt oun is done
wherein learning is turned off and any DA manipulations (not applicable in the full task
set data) are reset to a normal level. Performance data for the whole training simulation
phase is collected from this ending test run which isvshio Figure 2.2. The trained
model is then subjected to a maintenance simulation phase which consists of 5 testing
runs (of the normal variety) from which performance data is collected. Finally, the model
is subjected to a reversal simulation phase whasning process is essentially identical

to the training simulation phase, but the reversal task set is used rather than the normal
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task set. The special test run from the end of the reversal simulation phase is shown in
Figure 2.3. Figures 2.2 and32llustrate the learned performance of the model and that,
save for a few missed response or behavior repetition errors, the learned performance of
tasks is high, both under initial and reversal learning conditions.

For a more intuitive view ofthe moded s per f or mance, movies
available online that show the dynamic activity during various model simulations. The
URLSs for these are given in Table 2.1. Movie 2.1 shows the performance of the model at
the end of the training simulation phatee run is identical to that shown in Figure 2.2.
Movie 2.2 shows the performance of the model at the end of the reversal simulation

phase; this run is identical to that shown in Figure 2.3.

2.3 Model Architecture

It remains to explain the architecturkitbe brain of the simulated organism. This
brain essentially consists of a number of interconnected rectangular layers of
neurocomputational mean firimgte units. The layers correspond to populations of
neurons within areas of mammalian brain. Cartaput units take on values set by non
unit parts of the model that are involved with stimulus and working memory
representation. Other output units drive the simulated behavior of the model. Some of
the layers have their activity and synapticlearmmgd ul at ed by t he model
mechanism. This section will explain the units and layers of the model and how they are

collectively able to learn and perform the task sets described in Section 2.2.

2.3.1 Neural Unit Architecture

Figure 2.4 schematidglshows the structure of the neural units as well as the

dynamic equations. Each unit is a simple mean firatg unit that takes a weighted sum
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of the output of wunits, subjects it to
output value closentthe sigmoided net input sum. The weighted gumunit "Cat timeo

(in simulation iterationsjs defined by
D HO=awx(t-D
k

wheredy,is the output (ranging from 0 to 1) of uf@and U+ is the weight from unitQto
unit 'Q Thesquashing function for the units is defined by

1
1+exp b(x- 1))

(2 a=

wheregl is the gain of the sigmoid, setting the steepness of its central slope|satie
threshold of the sigmoid, the location along ¢th&xis where the center of the slape

The shape of this function is shown on the unit schematic in Figure 2.4, and the output
range of the function is from 0 to 1 with the value being exactly Qug=at. The

sigmoidal function, however, is not applied to only the net input, but rdtberet input

plus some Gaussian noise. The squashed net input may be defined as
(3)  s(t)=q(;®)+N(ONn)
where0 (0,¢) is a random normally distributed variable with standard devidtion

The output of the unit is defined by
@) o/(t)=o,(t- )+D[s(t)- o, (t- 1))

whereY is a growth/decay rate. This means that the change in the output at itgigtion

the scaled difference between the squashed net input (plus noise) and the previous output,

which means that the output over time will track the sigmoided pat.inThe output,
ranged between 0 and 1, probably may be thought of as representing the mean firing
frequency of an individual neuron with O representing minimal activity and 1
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representing the maximum frequency of firing. Alternatively, the output eagsent
the proportion of neurons regarded as active within a small population of neurons.

It is the normal dynamic of the units that has so far been described. However,
there are a few modifications to the default unit performance which the modadautili
First, for many of the units, the DA mechanism can drive changes in the weigfisis
will be explained in more detail in Section 2.3.13. The sigmoid thresliads be
modulated, either by the DA mechanism (see Section 2.3.8), or by tlad-iakaition
mechanism which will be explained in Section 2.3.2. More sparingly, the sigmoid gain
is modified, specifically in the mechanism for the generation of neural noise, which will

be explained in more detail in Section 2.3.10.

2.3.2 Layer Structure and Connectivity

The simulation model consists of a number of layers of one or more units, each
corresponding with a neuron or population of neurons in a particular area of mammalian
brain. Layers consisting of more than one unit are arranged in a rectangular array in the
model (typically 4x4 or 8x8). Layers are interconnected through mostly excitatory (but
sometimes inhibitory) feedforward connections. The topology of these connections is
organized by afferent arbors of essentially three tyfjpdisuniform sparseandoneto-
one For full arbors, the feedforward connection is fully connected so that each afferent
arbor of a destination unit consists of the entire source layer of units. The uniform sparse
arbors are like full arbors with some of their connectionstedhithose connections
being randomly determined by each weight having the same probability of inclusion. In
oneto-one arbors, each unit in the destination layer connects only to the equivalent unit

in the source layer, e.g. in connection between twbldyers, source unit (2,3) connects
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to destination unit (2,3). The initial weights for all arbors are set randomly when a new
model instance is created. Each layer has a Gaussian weight distribution from which
weights are drawn.

In the results (Chapt&) and also in the following explanation of the model,
aggregate activity is often measured in | a
the plots consists of the summation of all of the unit outputs at the current time step.
(Thus, an 8x8 layer ngahave a sum value between 0 and 64.) The type of activity
mar ked as 6tsumb6 is a thresholded sum wher
threshold (e.g. 0.7) and the sum given is the number of units that cleared the threshold.

Some of the lagrs have their activity and/or their learning modulated by the DA
mechanism, as will be described in later sections. Some of the layers have their
collective activity modulated by a competitive lateral inhibitory mechanism known as k
winnerstakeall (kWTA) (O'Reilly & Munakata, 2000) The heuristic used to implement
this is that all of the excitatory units that compete with one another are lumped into a
common pool. Generally, the pool consists of a single layer of units, but in the model
there s an instance (for the Request units) where two layers are pooled together.
Essentially, the sigmoided net inpil{®) (Equation 3) are calculated for each of the units
in the pool. In the event that more tA@anits of the pool clear the thresholfl o
activation (the unadjustef), the topQ+ 1 of these sums are examined, and the threshold
1 for the whole pool is adjusted so that it lies betweeri@heand("Q+ 1)th-highest
sums. For the layers that use KWTA, the ¢jaia set very high so thalhe threshold is
sharp. Thus, generally only a maximum@inits will become active over threshold

during a simulation iteration. This algorithm is a heuristic implementation of what would
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be a more complex circuit involving inhibitory interneuronsiglobal negative feedback
circuit. Use of KWTA allows distributed
model so that, for example, a Plan unit representation (see Sections 2.3.11 and 2.3.13)
may consist of 5 units, and there may be differets @epefully noroverlapping) of 5

units for each stimulus conjunction represented. It also allows lateral inhibition to be

more easily implemented in layers where there is only one desired winner.

2.3.3 Functional Overview of Model

Figure 2.5 shows aowverview of the functionality of the model. The model
consists of four modules. Three of these involve processing of Ss, Rs, and Os, and the
final one involves the communication and mapping between thidsResponse
Processing (R) block is essentialhe motor control module from Figure 2.1. This
receives behavior commands for Nod, Shake, and Track, and also thamdbgkite
64x64 retinal spatial map information that is needed to guide Track direction, and outputs
the immediately appropriate paitt/action/s. The other three blocks constitute the
cognitive processing module of Figure 2.1.

The Stimulus Processing (S) block takes immediate visual retina information,
from both the full and the foveal retinal regions; and also auditory tone irtiormand
outputs information used by the other three blocks. It forwards the spatial visual map
information to the R block. It also detects whether either the color or the tone is
novel/unfamiliar, forwarding this information to the O and Behavior $ieledlocks. It
sends a signal detecting the presence of a target square to the Behavior Selection block.
Finally, it maintains and updates the working memory of theskash colors and last

heard tone and forwards these to the Behavior Selection block.
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The Outcome Processing (O) block takes stimulus inputs involving primary
rewards and punishers, which signify food and shock delivery, respectively. It also
receives the novelty signal from the S blo
incrementsatte si mul ated organism grows more fdhu
not being rewarded. From these signals, it outputs two signals: a signal that measures the
Afrustrationo of the -omrigamti sdn, matnidv d thieo MDA s
one ofthe focuses of this study.

The Behavior Selection bl ockhdgqmnuwerncull lesdo
that allows the model to map information from the S and O blocks to a behavior selection
in the R block. Thus, dcitsimmmgdhtobenahcioced
takes information about color and tone working memory, (visual) target presence, and
novelty from the S block; and the frustration and DA signals from the O block; and

generates a behavior command (Nod, Shake, Track) whiziwiards to the R block.

2.3.4ResponseProcessing Module

Figure 2.6 shows mainly the Behavior Selection module, but also shows in more
detail the R block. An Exec (execute) unit exists for each of the three behaviors: Track,
Nod, and Shake. The TraBlkec unit can be thought of as having constant activation,
but the activation is inhibited by the Nod and Shake Exec units. The Nod and Shake
Exec units are activated by an equivalent pair of Init (initialization) units, which are a part
of the Action Gang mechanism, when the appropriate Init cell activity clears a threshold
(0.65). Once the Nod or Shake Exec units are actigated it is possible for both to be
activated simultaneoudlythey stay active until the motor behavior is completed,

releasing he Track Exec unitdéds activity when t hi
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Where the correspondents of the three Exec units might exist in mammalian brain
IS not entirely clear. The units here are presumed (in Figure 2.6) to correspond to
populations of frontal neocortical neuns (probably in PMC or SMA) that have a
recurrent excitatory connection that gives them persistent activation once excited, and
must then be inhibited by some signal of successful completion of the behavior. How
precisely premotor frontal cells implentdrehavior sequences seems poorly understood
at this stage. In this dissertation, they are treated like central pattern gen&atioes,
2003t hat cause the motor apparatus to first
oscillatory movements, then finally deactivate when the movements end in the centered
position.

It is also possible that Track, Nod, and Shake behaviors, which involve head
orientation, could be implemented by brainstem areas, including the interstitial nucleus of
Cajal(Klier, Wang, Constantin, & Crawford, 2002hd the superior colliculus which is
the locus of the essential ciity for oculomotor contro(Klier, Wang, & Crawford,

2003; Trappenberg, Dorris, Munoz, & Klein, 200Ijhe basal ganglia has extensive
control over both neocodal and brainstem aregSriliner et al., 2005)so either locus

for head orientation control in these tasks is plausible.

2.35 Stimulus Processing Module

Central to the simulatetio d el 6 s sensorium is a 64x64 |
This is implemented as four fields: a 64x64 set of units which correspond to the color
insensitive rod cells, and three foveal sets of 16x16 units which correspond to color
sensitive cone cells: a sedch for red, green, and bl(Rolls & Deco, 2002) The 64x64

rods drive the Track behavior through an algorithm that calculates, for the top, bottom,
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left, and right 24 pixeWwidth borders, average activations of the rod map. If the average
intensity of a border is over a threshold then, the camera/eye pans digdifothiat
direction. This automatic tracking mechanism is disabled when Track Exec unit activity
Is suppressed. The rods field would probably also drive the Stimulus Presence unit,
potentially through a thresholded mean algorithm, though it is impledenore simply
in the model.

As for the three sets of 16x16 cone color maps, activity from these is passed into a
Red vs. Green, Blue vs. Yellow color opponency algoriRalls & Deco, 2002jvhich
outputs its results to a set of four Colors In units (Red, Green, Blue, Yellow). For
example, the Red Color In unit takas its activation value the average (over the whole
16x16 fovea) Red cone activation minus the average Green cone activation. These
Colors I n units allow the model 6s I mmedi at
simulation iteration according tohgre the camera/eye is directed within the 128x128
pixel arena. Color opponency in animal vision is implemented as early as the lateral
geniculate nucleus in the visual processing pathway, and thesasisitive (Colors In)
units in the model may correspd to cells in V4ARolls & Deco, 2002) Although only
red and hie squares are actually utilized in this dissertation, the model potentially allows
representation of colors which could be represented by mixtures of primary color
features.

The other major stimulus input for the model is auditory tone. There are 18 Tone
In units, each corresponding to a pitch on the musical chromatic scale (C through B).
While it is not clear that humans have cells that are receptive to musical pitch per se, the

auditory pathway is tonotopically organized, from as early as the caohia primary
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cortex (Al) cell§Kolb & Whishaw, 2003) Therefore, tentatively, the Tones In cells
could be said to reside in A1l. As with the color units, it is actually possible that multiple
tone presences could be simultaneouspyesented. However, only single brief C and
Eb tones are utilized for this dissertation.

Both the Colors In and Tones In units have a set of working memory (WM) units
associated with them, i.e., 4 Color WM units (Red, Green, Blue, Yellow) and 12 Tone
WM units (C through B). Both sets update their state whenever a new color/tone is
presentedbut their state maintenance in the absence of change is different for the
different modalities. The maintenance latency for color working memory is 5 s (50
iterations), and it is essentially indefinite for tones. The rationale for this is that the tone
working memory needs to be maintained over multiple trials whereas the color working
memory should only be active for the duration of a single trial. How the working
memory system learns these respective durations is a question beyond the scope of this
dissertation, and the working memory is implemented algorithmically rather than through
afferent neural units. Both modalities of working memory are presumed to reside
somewhere in PFC in mammalian brain, probably in the ventrolateral portion.

Di st imactto fiamd Awhereo pat hways have beer
(Milner & Goodale 1998; Ungerleider & Mishkin, 1982; F. A. W. Wilson, O Scalaidhe,
& GoldmanRakic, 1993)yand auditory(Arnott, Grady, Hevenor, Graham, & Alain, 2005)
perception. Clearly, this model i's repres
the tasks involve recognizing a (colmrtone) identity rather than a spatial location.
Whereas the fiwhereo (or spatial, or dorsal

the superior colliculus, pulvinar, and posterior parietal cqitéilner & Goodale, 1998)
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to arrive in dIPFC where it participates in spatial working men@@ourtney, Petit,
Maisog, Ungerleider, & Haxby, 1998; Smith & Jonides, 1999; F. A. W. Wilson et al.,
1993 t he fAwhato (or object, or ventral) vis
LGN, primary (V1) and extrastriate visual areas (V2, V4, etc.), and inferotemporal cortex
(Milner & Goodale, 1998)to arrive in VIPFC where it participates in object working
memory(Smith & Jonides, 1999; Ungerlaad Courtney, & Haxby, 1998; F. A. W.
Wilson et al., 1993) The auditory Awheredo and Awhat o
arrayed dorsally and ventrally, respectively, with inferior frontal areas beivgizct
during pitch task¢Arnott et al., 2005)

There is also a unit in the model for detecting novel stimuli in the S block. This
Novelty unit activates for a 500 ms (5 iteoa) burst for the first three times that a color
or a tone is presented, and ignores the same color or tone thereafter. There is likely to be
a mechanism in the medial temporal lobe (hippocampus and parahippocampal regions)
for novelty detectiorfd. E. Lisman & Otmakhova, 2001; Stern, Sherman, Kirchhoff, &
Hasselmo, 2001)

Figure 2.6 shows the final stage of units from the S block which are inputs to the
Behavior Section module. The activation of these units is set algorithmically rather than

through neural activation propagation.

2.36 Outcome Processing Module

As Figure 2.6 shows, there are two output units in the O block: the Frustration
unit and the DA Signal unit, and these are likely to have neural correspondents
somewhere in ACC, and the midbrain DA cells, respectively. The Frustration unit

measures the amount of hunger and/or frustration that the simulated organism is

88



experiencing as it continues not to be rewarded. According to Figure 2.7, the visceral
state of the organism sendn excitatory signal that steadily increases as the simulated
organism becomes hungrier. As Figures 2.
Is reset, through inhibition, by the occurrence of (food) rewards. Presumably, if visceral
state is tk source of the ramping signal, this state may also be reset by temporary
satiation. Alternatively, the Frustration unit might have its ramping up driven by, instead
of a visceral state signal, more of a-@vn expectatiof-reward signal which is

active when the organism is in an environmental context where they are expecting to
procure rewards. In any case, the presumed correspondent area of the Frustration unit in
animal brain is somewhere in the ACC, as there is much evidence for consequence
monitaring and prediction activity in this area (see Section 1.2.4.2). As a part of PFC,
ACC cells may innervate VTA directly, or they may exert influence on VTA indirectly,
through intermediate PFC cells, or through a ventral striatal (NAc) pathway (see Figure
1.7).

Figure 2.7 shows that the DA Signal unit, which corresponds to SNc and VTA
cells, is excited by the Frustration unit, and also by Reward and Novelty unit activity; and
inhibited by Punish unit activity. Figure 2.8 shows these influences on trggbal in a
sample model run. A badevel DA activity level is maintained tonically, and the
afferents superimpose their influence on this. As Frustration unit activity ramps up, it
drives up the tonic DA signal until a reward resets the frustra#aiditionally, rewards
cause massive phasic spikes in the DA signal and punishers massive phasic dips. As will
be seen (Section 2.3.13), the extreme phasic levels contribute learning signals (LTP and

LTD) to the rest of the model, and the tonic level setsthreshold of the Action and
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Babble Gating modules. The likely anatomical connection between the Frustration and
DA Signal units was suggested above. There are many potential locations of the Reward
signal, including the insula and the lateral hyptatimus. One possibility for the source

of the Punish signal might be the serotonergic raphe nuclei which could possibly
phasically signal punishme(Daw et al., 2002) It is likely, though, that an excitatory
aversive signal could increase activity in the inhibitory, rather tharefyc VTA cells
(Ungless et al., 2004)The source of thiexcitatory signal could be ACC or amygdala

since both of these areas have excitatory responses to aversive consequences or stimuli.
The Novelty unit to DA Signal unit connection may correspond to an indirect pathway
from the hippocampus and parahippopairareas to VTAJ. E. Lisman & Otmakhova,

2001)

2.3.7 Behavior Selection Module

It is the Behavior Selection module, shown in Figure 2.6, which allows S and O
block information to influence the R block. Essentially, this medwinsists of three
pat hways: a front al neocortical, -RHorsal st
mappings; an anterior cingulate, ventral s
O-R mappings triggered either by frustration or novelty; andlffaDAer gi ¢ o6cr i t i
pathway which innervates both of the above pathways, affecting both the threshold of
activation and learning.

The 6actordé pat hway begins at the Sti mu
units. These are fully connected to an 8x8aéd’lan units by learnable weights that
initially start out very small. These use a kKWTA mechanism sucfQhab. This

allows representations of size 5 to develop for conjunctions of activity of the S block
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afferent units. The Plan units, in turnedully connected through more learnable

weights to two 4x4 sets of (Nod and Shake) Request units which compete to select Nod
or Shake behaviors. Both sets of Request units are lumped into the same kWTA pool
which only has one winner. Thus, although éhare only two behavior choices, there are
multiple Nod and Shake units that may each potentially specialize in responding to
different Sunit Plan patterns, so the representation allowed for, for example, Nod could
be a disjunct of multiple conjunction3his is needed in a situation where the system
must learn something like:

(C AND Blue) OR (Eb AND Red)> Nod.

The Request units drive the basal ganglia Action Gating mechanism which allows or
vetoes the actual response of the Nod or Shake Exec umitssarhmalian brain, the Plan
units may reside in either PFC or in premotor areas like PMC. The Request units are
presumed to reside in PMC or SMA, as are the Exec units in the R block. Section 2.3.8
will discuss possible basal ganglia anatomical conngctiv the frontal neocortical areas
involved in the requesting and executing the desired behavior.

The Obabbl ed pat hway begins at the Frus
innervate the Babble Request unit in a way such that activation of eijggriRequest
activity. The Babble Request unit drives a basal ganglia (ventral striatal) Babble Gating
mechanism that, in turn, drives the 8x8 set of Babble units. Not shown in Figure 2.6 is
the additional factor of ufiterendomlyl(seerSectiche 0 t h
2.3.10) whenever there is a stimulus present. The Babble units, however, require the
additional gating of the basal ganglia mechanism (described in Section 2.3.9). There is a

single winner in the 8x8 set of Babble units, émel result is that the winner is essentially
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random. The Babble units connect through random sparse connections to the Plan and
Request units which means that these are randomly activated as a result of a babble being
gated. It is through this mechanishat a random choice of a Nod or Shake behavior
command is made when the model I's prompted
somet hing newo. The anatomical evidence
1.2.4. The Frustration to Babble Requasit projection is probably an int/'&CC

connection. The fact that the hippocampal regions project to &Gt & Pandya,
1987)suggests the likely correspondent of the Novelty to Babble Request unit

connection. ACC projects, in large part, to the ventral strigitmorn et al., 2004)

which would then project, through the BG output, back to ACC. This would correspond

to the Babble Gating connections. As for the Babble units, they may correspond to either
ACC or FPC unitsas discussed in Section 1.2.4.3. ACC connects to both PFC and
premotor unitgPaus, 2001)and FPC projects to other (more posterior) regions of PFC
(Koechlin & Hyafil, 2007) so these pathways may potentially implement the Babble to

Plan and Request unit connections.

Finally, the o6cr it ihe®ASgnodl iniviathe Papané ads o
Request unit synapses, and to the Action and Babble Gating modules. The Action Gating
module receives its D&rgic input from the SNc, as the dorsal striatum receives its
innervations from that midbrain nucleus. The Balibating and Plan and Request units
receive their DAergic innervations, on the other hand, from VTA. The-&#4ic
connections are not implemented as weights, but, rather, the DA Signal level modulates

learning in target synapses and/or the threshptfoutput sigmoidal functions.
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2.38 Action Gating Module

The o6actord pathway is gated by a compl
mechanism, depicted in Figure 2.9. This, as well as the Babble Gating mechanism
described in Section 2.3.9, was designed to implement the braking release mechanism
described in Sectioh.2.2.2 (see also Figure 1.4), though the specific units and their
connectivity are not exactly analogous to the actual BG circuitry. Though action
selection is an ofteproposed and plausible role of the BG circu{@®urney et al., 2001;
Redgrave et al., 1999ah this model, the BG has more of a role of output ggrgwn
et al., 2004) Brown and colleagug2004)in their model suggest a layer specificity in
frontal neocortex, where activity in layers Il, lll, and Va represents, in essence, requests
(potentially conflicting) for particular behavior chei; and layer Vb activity represents
the actual behavioral output gated. The more superficial layers (11, 1ll, Va) project to the
BG, and the BG outputs, in an inhibitory fashion, to the thalamus which projects in
excitatory connection to the deep outlayter (Vb). (Layer VI provides a tegown
enabling signal to both input and output layers in(Br@wn et al., 2004inodel, but this
layer is ignored in this dissertation.) In the dissertation model, the Request units take on
the role of the input layarnits, and the Init units are analogous to the Layer Vb cells.
The Request and Init units are essentially considered to be colocated within the same
cortical columns. When Nod or Shake (or both) are requested by Plan unit excitation of
the Request unitshe Action Gating mechanism decides what behavior (if any) should be
allowed to be initiated, and sets the appropriate Nod or Shake Init unit appropriately. If
these units are excited over threshold, they trigger Exec activity which cannot be

interrupteduntil the behavior is completed. What behaviors are permitted or rejected by
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the gating mechanism can be learned by the Go and NoGo units, respectively. The Go
units |l earn to Aopen the gate widebo, I n re
whengating of the behavior during those contexts leads to reward. On the other hand,
the NoGo units learn to fAshut the gateo, I
contexts, when gating of the behavior during those contexts leads to punishment.

A (somewtfat archaic and whimsical) military metaphor might be used to explain
the performance of the Action Gating mechanism. Imagine a fortified city with two
gat es, manned by sentries and commanded by
performance by providinthem with wine. It is important to the governor that certain
dignitaries be allowed into the city through specific gates (which correspond to specific
behaviors in the model), and that certain undesirables are shut out. The observable
characteristics ahe people permitted or denied entrance correspond to working memory
contexts in the model (in our task, the context of thelaard tone and the currently
present colored square). If a desired dignitary is allowed into the city through the correct
gate (corresponding to an appropriate behavior, given the current situation), then the city
benefits, and the governor is happy and rewards the sentries temporarily with more wine
(a dopamine burst). If a spy or other enemy is allowed into the city antk iakork
mischief (corresponding to a wrongfiyned behavior in the model), or if the right
dignitary is ushered in through the wrong gate (corresponding to the wrong behavior
being executed at the right time), then the governor is unhappy and puhisisestries
by temporarily withholding wine from them (a dopamine dip). The level of the
governor6s overall happiness with the sent

t he amount of wine heb6s providing them.
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Now, there are three types of seedrin the city, greeters and gate openers (the
Go cells), gate shutters (the NoGo cells), and a single captain of the guard (the Conflict
unit). The captain of the guard is unable to actually observe and inspect the people that
desire entrance to the citiyut is aware of the operation of all of the gates, and if the
greeter sentries are in the process of opening more than one of the gates at the same time
(which is a cause for suspicion in this city), he vetoes their activities. The genial gate
openers gnerally allow more people to enter the city when they have more wine, but are
less likely to let people in when they have less. The unfriendly gate shutters, on the other
hand have a predisposition to shut everybody out, but when provided with enoegh win
desi st . I n the sentriesd hierarchy, the
Each gate opener or shutter has a limited memory allowing them to recognize only one
kind of person (one working memory context), and among the openersttarshonly
one sentry in each is allowed to operate at a time at each gate, the sentry that best
recognizes the person to be permitted or denied access. So each sentry specializes in the
recognition of a particular class of person, and when they encdbigelass, they will
let them in or shut them out.

Ordinarily, when wine is at an intermediate level, the gate openers will let in those
requesting access by default, though after a significant waiting period. The gate shutters,
by contrast, will idletheir time away. If an important dignitary arrives, one of the gate
openers, recognizing them, will excitedly open the gate for them with less delay than
usual. If one of the gate shutters, however, recognizes a particular person as a spy,
however, thewill insure that the gate is shut. When things are going well and there is

more wine flowing, the gate openers are more likely to let people in and the shutters less
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likely to shut people out, whereas the reverse is true if times are bad and there is less
wine. Each sentry responds in a simpimded way, generally, reacting to the particular
kind of person they see, and not changing their responses. However, when the governor
gives the sentries a wine reward, the gate opener who was responsibléenfpirietie
dignitary learns that dignitaryds identity
On the other hand, a shutter who is not inclined to let in the person in will learn to ignore
them in the future. When the governor withholds wineyédneer, the opposite is true: the
opener will learn to ignore the person in the future, and the shutter will learn to quickly
shut them out in the future. The result is that the city garrison is capable of learning
whom to admit and whom to turn away basedhe consequences for the city (in the
model, whether the organism is rewarded or punished for executing a particular behavior
in a particular context).

Moving from the metaphor to the model, the Request unit activity for both Nod
and Shake drives thespective Go E (excitatory) units and also the Conflict unit which
is only engaged if both behaviors are requested. The Conflict unit likely corresponds to
feedforward inhibitory interneuroéisnot medium spiny neurods in the striatum which
inhibit the GoE cells when they are sufficiently excited by cortical afferéBtewn et
al., 2004) The Go E cells are excited by color and tone working memory units, and also
by the neural noise mechanism explained in Section 2.3.10, as well as by the Request
units. DA Signal activity modulates both learning of the WM to Go E unit weights, and
the output thresholdsof the Go E units. The operation of the learning mechanism will
be detailed in Section 2.3.13. The output threshold effects are shown in Figuras2.10:

DA level increases, the thresholds of the Go E units decrease, making Go E unit
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activation easier, and as will be seen in Chapter 3, more prompt. The 4x4 Go E units
compete through the KWTA mechanism for a single winner. The gating noise provides a
random bias on which unit is the winner during the occurrence of a visual stimulus.
Request activity in conjunction with this random bias activity is generally enough to
trigger Go E unit activity, but a sufficient decrease of DA can inhibit Go E activation
altogether. The Go E units in their activity all excite a single inhibitory Go | unit; this
arrangement corresponds to a proposed efferent connection betweepatinecty

striatum neurons and GPe inhibitory indirect pathway neufférask, 2006) The direct
pathway would actually be a doubtghibitory (i.e. disinhilitory) connection (see Figure

1.4), but it is abstracted in this dissertation as a deettéatory connection from the
Request unit to the Go E units to the Init unit which represents an amalgamation of the
GPIi/SNr, thalamus, and the neocortical thalataiget. Each Init unit is excited by its
corresponding Request unit, and the Go E units, and inhibited by the corresponding
NoGo and Go | wunits. The I nit unitds act.i
and Go E unit activity. The feedforwardogation/inhibition of the Geo-Init pathways
essentially causes Request activity to phasically excite the Init unit, but disables new Init
activity until the behavior request is released so that the Go | units are deactivated.

The 4x4 NoGo units also compete for a single winner through KWTA. They may
be excited by learned working memory conditions, or by a conjunction of random gating
noisedetermined bias and the occurrence of Init unit activity. Thus, for example, any
time aNod is triggered, one of the 4x4 Nod NoGo units is activated by the Nod Init
activity, so that DA phasic activity is able to train the response of the NoGo pathway.

Both the random noise and the signal from the Init units probably come from a
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thalamostmtal pathwayBrown et al., 2004; Mengual, de las Heras, Erro, Lanciego, &
GiménezAmaya, 1999) As shown in Figure 2.10, the NoGo units have their output
thresholds affected in the oppositeHias from the Go units: increasing DA increases the

thresholds, making it harder to activate NoGo units when the DA level is high.

2.39 Babble Gating Module

The gating mechanism for the O6babbled p
simplerthanthatfo t he G6act or 6 jom@dnibed.alWWhereab thetforrser mi | ar |
pathway is dorsal striatal, the latter is most likely ventral striatal. A Babble Request unit,
probably in ACC, excites the 4x4 set of Babble Go E units which compete through
KWTA for a sngle winner. This unit excites an inhibitory Go | unit, and the Request, Go
E, and Go | units in their dynamics lead to a phasic activation of the Babble Init unit by
Babble Request activation, and then the requirement of disengaging Request unjt activit
before a new babble can be requested. If the Babble Init unit is driven over threshold
(0.5), the Babble Exec unit turns on for a
inhibits the Babble Request unit directly. A refractory period offDsterations) is then
required before a Babble Init signal can trigger a new 2.5 s Babble Exec. While the
Babble Exec unit is active, it, in addition to babble noise (see Section 2.3.10), drives a
single random Babble unit to activation.

The Babble N&o pathways works in the same fashion as the Nod and Shake
NoGo pathways work. Learned working memory contexts may suppress Babble Init
activity by triggering NoGo activity, but Babble Init activity also triggers Babble NoGo
activityd randomly in one of th 4x4 unit® so that the NoGo pathway may be subject to

learning through DA Signal bursts or dips.
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Figure 2.1006s depiction of the threshol
Gating, as well as the Action Gating, mechanism: DA makes Babble Go ceds mo
responsive and the NoGo cells less responsive. The DA Signal is, of course, also
involved in training the Babble Request to Go E and NoGo pathways, with phasic bursts

training the former, and dips the latter.

2.310Neural Noise Generation Mechanism

The Action and Babble Gating mechanisms and the random behavior generation
allowed by the ébabbled pat hway require a
pseuderandomness. Where that noise source or sources might be located is unclear.
However, itis proposed here that the thalamus might be a source, as it receives a wide
variety of input related to both external and internal stimuli, and the sheer variability of
occurring thalamic states, as a result, might provide a viable source of paaddon
activation. An illustrative analogy for the algorithm used by the model is that there are
layers of¢ neural units where 1 out of @llof the units is driven to activation by noise
input, implementing, in essence, @&sided die. Sparse random feawfard connections
from these fAdiceodo | ayers to their targets
targets.

Figure 2.12 shows the actual implementation of the neural noise source. This
may or may not be neurally plausible, but the importantirésthat there are two sets,
8x8, of units that, upon the appearance of a visual stimulus (a colored square), activate
randomly one unit each: the Gated Dice layer and the Babble layer. The Gated Dice
activation drives the Action and Babble Gating natgbm noise, projecting to the Go

and NoGo units. The Babble units are the source of random Plan and Request activity
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during initiation of babble behaviors. A single 8x8 Neural Noise layer generates

considerably varying random output activity in all @funits. Activation from this

projects in a orn¢o-one fashion to 8x8 Neural Dice and Babble Dice layers which both

have KWTA dynamics set up for a single winner. However, the dynamics of these units

is specially modified. Each 8x8 Dice layer has-sglfitatory connections for each unit,

and a reciprocal connection to a kind of 6
Figure 2.12). The gain of the output units is set extremely low by default, so the

Kk WTA mechani sm does ndgandtha Nedrad anéBalble Diteeunits wi n
basically mirror the activity of the Neural Noise layer. However, when the Dice Set unit

is activated, the gain on the Neural and Babble Dice units significantly increases for the
duration of Di othat&ked od workiagcntemoryadynandcris, s

implemented in the Dice layers, similar to the working memory dynamics the author has

used in a previous wotfChadderdon & Sporns, 2006Essentially, this working

memay dynamic, in combination with the KWTA algorithm, freezes the most active unit

of the Dice layers into activity until the Dice Set unit is inactivated and the gain returns to

its original low level. The Neural and Babble Dice units project, respectieetiie

Gated Dice and Babble layers, and do so also it@o@e projections. These output

layers, essentially, take a logical AND of activity from their afferent Dice layers, and the
activity of a Dice Gat e unigmalstheGatediice t he D
and Babble units being set to the values of the Neural Dice and Babble Dice layers,
respectively. The presence of a stimulus (perhaps detected by thalamic lateral geniculate

nucleus) activates both the Dice Set and Dice Gate umitdtaneously. As a result, the
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output layers generate no random activity in the absence of a colored square, but each
(usually) has a single random unit activated when a visual stimulus appears.

Movie 2.3 shows the noise generation mechanism operatmggdte simulation
run shown in Figure 2.2. Labels for the plots are: (1,1) Neural Noise Units; (1,2) Neural

Dice Units; (1,3) Gated Dice Units; (2,2) Neural Dice Set; (2,3) Neural Dice Gate.

2.311Model Implementation of Learned Responses

Figures2.13 hr ough 2. 15 il lustrate the dynami
making learned responses. Figure 2.13 shows an overview of how Nod responses are
generated by the model during the same simulation run as that depicted in Figure 2.2 (and
Movie 2.1): thetest run that occurs after the model has been trained successfully on the
full task set. The activity of color and tone working memory can be seen (second and
fourth traces). It can be seen, also, that around 3 Plan units are activated during a visual
stimulus. For C AND Blue or Eb AND Red, the Nod Request units are activated:
generally only one unit winning because of the KWTA mechanism. Nod Request activity
triggers Nod Go E activity which, in turn, triggers Nod Go | activity which is inhibitory
in nature. The Nod Init unit is activated and, in all but one case, goes over the Nod Exec
threshold shown in green, which triggers a Nod behavior. Figure 2.14 shows, for the
same simulation run, how the afferents to the Nod Init unit contribute to itstamtiva
The Request and Go E unit activity (shown in black) is excitatory, whereas the Go | and
NoGo unitsé activity (shown in red) is inh
the NodInitSum trace. This last trace is the net input to the Nbdriij the actual
output of the Nod Init unit follows in the next trace. Interestingly, it can be seen that one

of the desired Nods the last on@ fails to execute a Nod behavior because the Nod Init
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unit doesnodt quite cl eamrgreénhinghe Namthitttacep c t hr e

The Shake behavior works in the same fashion as Nod, so figures are omitted for it.
Figure 2.15 shows the crucial spatial structure of learned Plan and Request unit
activity. Figure 2.15(a) shows, in one simulation itema{jiteration 45 of the run shown
in Figures 2.2, etc.), how the occurrence of a blue square in the context of a C tone affects
the Plan and Request layer activity. In the first column of plots, the Visual Presence unit,
and the color and tone currentnstili and working memory traces are shown, along with
Babble unit activity. Plot (1,2) (first row, second column) shows the weights in fanout
from the single Visual Presence unit to the 8x8 Plan layer. Plots (2,2) and (2,3),
respectively, show the fanoweights from the Blue WM and Red WM units to the Plan
layer. Plots (3,2) and (3,3), respectively, show the fanout weights from the C and Eb tone
WM units to the Plan layer. Essentially for this example, the logical AND of Plots (1,2),
(2,2), and (3,2) ges the pattern seen in Plot (4,2), the actual Plan unit activation in the
condition of Visual Presence AND Blue AND C. Plot (1,3) shows the net input
activation of the Plan layer input arbors to each of the Nod Request units; Plot (4,3)
shows the same ifdhe Shake Request units. Plot (1,4) shows the net input activation for
the Babble layer input arbors to each of the Nod Request units; Plot (4,4) shows the same
for the Shake Request units. Plots (2,4) and (3,4) show the Nod and Shake Request unit
outputs, respectively. It can be seen that unit (4,2) of the Nod Request layer wins the
competition. Figure 2.15(b) shows how the occurrence of a red square in the context of
an Eb tone affects the Plan and Request layer activity. It can be seen tfetatdiet
of Plan units becomes active, and unit (4,4) of the Shake Request layer wins the behavior

request competition. ldeally, each color/tone conjunction is represented-by non
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overlapping sets of Plan and Request unit& udits in a Plan represertion are

sufficient to sustain the correct output that selects the correct Request unit, and to provide
some robustness in the representations. As will be explained in more detail in Chapter 3,
however, accidental overlap in learning causes behavioannig and is, therefore, a

source of capacity limitation in the model.

2.3.12 Model Implementation of Babble Responses

Figure 2.16 shows the first half (500 iterations) of run 4 of the training phase for
the full task set. (Movie 2.4 also shows this.JyuBuring this run, the model has learned
the C AND Blue-> Nod and C AND Red> Shake conjunctions, but it must now learn
the Eb AND Red> Nod conjunction. The first three times the model is presented with a
red square, it does not react, so it ishegitrewarded nor punished. The level of the
Frustration unit activation, however, rises as the model goes unrewarded. Although the
model also responds with Novelty unit activation during the Eb tone deliveries, it is
primarily the Frustration unit thatisles the Babble Request unit. Once the Request unit
is driven to a high enough level, the Babble Go units are finally activated enough to cause
the Babble Init unit to activate over the Babble Exec threshold (shown in green in the
Babble Init unit trace) The first babble (shown in Figure 2.17(a)) is a Shake which is a
wrong guess, for which the model is punished. A second babble fails to trigger either a
Nod or a Shake, but the third and last babble (shown in Figure 2.17(b)) triggers the
correct Nod bkavior, and for the rest of the simulation run, the Babble Request unit is
never pushed high again because the model responds correctly to the stimulus and the
resulting rewards reset the Frustration activity. So the model ceases babbling once it has

leamed the conjunction.
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Figure 2.17 shows more closely the first and third babble from the simulation run.
It can be seen that a single random Babble unit is activated during each babble. A
random distribution of & Plan units is activated as a resultto$tand a different

behavior is randomly selected (through the Request units).

2.3.13 Model Implementation of Learning

Thus far, the performance of the model in the absence of (or before) learning has
been discussed. The afferent weights to the Raquest, Go, and NoGo units, however,
are subject to learning and unlearning depending on the operation of the DA mechanism.
Two prominent features of the mwowauel 6s | ear
driven, andeligibility tracesare used for decting which synapses are eligible for weight
modification. Section 1.2.3.7 discussesvadue i ven | earning and DAOGS
Figure 2.18 shows graphically the relationship between DA level and LTP (weight
increase) and LTD (weight decrease). WttenDA level is in the intermediate range, no
synapses are modified. On the other hand, when the DA level is in the upper or lower
regions, eligible synapses are subject LTP or LTD. The units dominateddothD1
Plan, Request, and Go udithave LTP triggred when the DA level is driven over 0.75
and LTD triggered when the DA level is driven below 0.20. ThedD@inated units, the
NoGo units, have LTD in their upper range and LTP in the lower range (for reasons
explained in Section 1.2.3.7). Generallyg DA level falls in the intermediate range
where no weights change, but phasic (reward or novelty) bursts drive the level into the
upper range, and phasic (punisher) dips drive the level into the lower range. The weights
are all positive values (neveraging signs), generally no greater than 1.0.

Additionally, each learning layer of the model has a maximum weight value that caps the
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value for each synaptic weight. There is also heterosynaptic competitive weight
renormalizatior(Abbott & Nelson, 2000jor most of the DAInnervated areas which is
implemented by a total (afferent) weightximum. If, after synaptic modification, the
total weight runs over this cap, all weights are rescaled to bring the total afferent arbor
weight to this maximum.

Eligibility traces are used in a number of models to solve what would otherwise
be a difficut credit assignment proble(®arto, Sutton, & Anderson, 1983; Brown et al.,
1999; Sutton & Barto, 1990)The difficulty is that Hebbian events ¢oacurring pre
and postsynaptic activity at a synapse) are transient affairs, and by the time a reward or a
punisher is delivered for the behavior they were responsible focptbecurrence of
activity is nelonger present. However, if a synaptic memory existed that remembered
the Hebbian event over a period of a few seconds, then by the time the reward or punisher
is delivered, the eligibility trace, the synaptic memory, watildl be active, and the
synapses could then be rewarded or punished accordingfy cl@amnel and voltage
gated activity at specific synapses might allow the necessary synaptic nidhagee &
Johnston, 1995; Takechi, Eilers, & Konnerth, 1988gn the preand postsynaptic
activity, together, generate enough calcium influx. In the model, a coincidence of pre
and postsynaptic ouput activity over a threshold (0.7) causes an eligibility trace to be
initiated for a period of 3.8 s (38 iterations). During the eligibility trace activation, the
synapse is subject to the DA effects shown in Figure 2.18.

Figure 2.19 shows an exampletagh DA initiating LTP in a single synapse (a),
and an example of low DA initiating LTD in another (b). It can be seen in trace 3 of both

examples (both of them color working memaoyPlan synapses) that the eligibility trace
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remains on 3.8 s after the-occurrence of preand postsynaptic activity ceases. In the
fourth trace, the DA activity is shown with the LTP and LTD thresholds superimposed on
them. It can be seen in the final traces that, in the first example the weight increases at
the time wha the DA level moves over the LTP threshold, and in the second the weight
decreases when the DA level drops below the LTD threshold. (The blue lines shown in
the Weight trace are the maximum weight values for the synapse.)

The collective behavior of tHearning can best be understood by examining how
the model forms distributed representations for the conjunctions it learns. Figures 2.20
and 2.21 show an example of the model 6s in
the C AND Red> Shake conjuetion. (Movie 2.5 shows the run, and Movie 2.6 shows
the superset of the iterations that Figure 2.21 was drawn from.) In the first behavior (and
babble), the model guesses the correct behavior output, and the second and future
responses (though the latte ar enét shown) are correct | ear
babble in iteration 42 (see Figure 2.21(a)), it can be seen that a pattern of (primarily) 5
units is activated in the Plan layer. Plot (3,4) shows that unit (4,4) of the Shake Request
layer is adivated. The Plan and Request unit activity is stimulated by the Babble unit
activity shown in Plot (4,1). It should be noted that there are existing fanout weights
during the babble; these are the Plan unit afferent weights for the previously trained
conjunction, C AND Blue. During iteration 100, after the reward has been delivered (see
Figure 2.21(b)), the pattern previously seen in the Plan units appears in the fanout
weights atop the existing pattern for the previous conjunction. The patternes in th

Visual Presence, Red WM, and C WM fanout weights which means that the next
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occurrence of Visual Presence AND Red WM AND C WM will cause the corresponding
Plan units to reactivate: the same as were active in Figure 2.21(a).

The learning dynamics of thda layer is typical in the model. Each Plan unit is
innervated with Visual Presence, Color WM, and Tone WM activity. When the model is
rewarded for a correct behavior in these simulations and a Plan unit is active, the Visual
Presence unit is usuallyilsactive, and the color WM unit for the viewed color and the
tone WM unit for the tone context are always active. Because of the individual weight
maximum, the afferent arbor maximum, and a high (fast) learning rate, the units are able
to learn in oneeaward presentation a conjunction of active afferents that can potentially
| earn Adondt careo conditions. For the PI
arbor maximum, and the learning rate (the increment of the weight during LTP and
decrement dung LTD) are all set to 0.55, and it is the case that an afferent output
driving a single weight of 0.55 is enough drive the unit over the sigmoidal threshold. So,
if only, for example, a Blue WM unit were turned on, and there was no tone working
memory @ Visual Presence unit activity, then the weight from the Blue WM to the Plan
unit would adjust to 0.55 on reward, and thereafter the unit would be activated whenever
the blue working memory was engaged, but the tone and Visual Presence activity would
betr eated as fAdondét caredo conditions. Howev
is on, and one of the color, and one of the tone working memory units, then all of the
three afferent units try to add 0.55 to their weights to the Plan unit dugmgard
triggered LTP. However, this leads to an arbor sum of 1.65 which is over the 0.55
maximum arbor threshold. Therefore, the renormalization algorithm operates so that all

of the 0.55 weights are scaled down so that their sum is 0.55, i.e., ¢helBokeights is
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scaled down to 0.183. The result is that all three afferent units need to be active in the
future in order to drive the Plan unit ove
speaking, the total afferent activity needs to ser®.5 for the unit to be activated. A
single afferent unitds activation only pro
provides 0.367 in afferent net input, and these are not enough to activate the Plan unit.

The renormalization algorithm essktiyy forces a logical AND to be established for alll

of the previously active afferent units.

The Nod and Shake units operate according to a similar dynamic to the Plan units.
However, they only receive 2 inputs: Color WM, and Tone WM input. Thus foney
conjunctions that can have at most 1 fAdondo
learning the Shake Go weights during the time frame of the Figure 2.20 simulation.

The Request units learn under a somewhat different dynamic. The maximum
arbor weightis set much higher, 1.0. The learning rates, however, and the individual
maximum weights are set much lower, 0.2. Thus, at least 3 Plan units connected to
learned weights have to be activated in order to make the Request unit activate over
threshold. @nerally, somewhere between 3 and 5 units are activated during a babble, so
the Plan unit representation for a conjunction requires only 3 out of potentially 5 units to
be active, and it doesndt matter which 3 wu
model to degradations that come from losses incurred during learning of new
conjunctions or failed babbles which trigger unlearning in previouslyalleitated Plan
units.

One of the features of the model is its capability of reversal learning. Figures

2.22 through 2.24 show an example of how a conjunction can be unlearned and relearned.
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Specifically, what is shown is from the first simulation run of the reversal phase. The
desired conjunction is C AND Blue Shake. However, what has been previously

learned in the training phase is C AND BkxeNod. During the first presentation, the
model tries the behavior it learned previously and is punished for it. Thereafter it ceases
to make that response, but finally, during the sixth presentation ofttbestpliare, the

model babbles and ends up choosing the correct response which it then learns. Figure
2.22 (and Movie 2.8) shows the overall dynamics. Figure 2.23 (and Movie 2.9) shows
how the weights are changed during the initial punishment unlearmimg pattern seen

in the Plan activation in 2.23(a) is effectively subtracted from the weights of the Visual
Presence, Blue WM, and C WM fanouts to the Plan units in Figure 2.23(b), so that the
occurrence of the stimulus conjunction will no longer triggese Plan units in the

future. Then in Figure 2.24(a), it can be seen that the correct babble activity seen in the
Plan units gets added to the Visual Presence, Blue WM, and C WM fanout weights in
Figure 2.24(b) so that the those Plan units will be atetd/an the future. In addition,

though it is not shown, these Plan units will have learned weights to Shake Request unit
(4,3) so that the new response is a Shake rather than a Nod. Other learning, not shown,

transpires in the Go units that allows th@mypriate action gating.

2.3.14 Dopamine Effects Manipulation

So far, the performance of the model under normal DA conditions has been
explained. However, this dissertation is also interested in the effects of modifying the
dopaminergic activity of the adel, specifically producing patelective conditions of
hypo- or hyperDA concentration, and testing both learning and performance under these

conditions. Thus far, learning has been understood as being directly controlled by the
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DA

Si gnal tyuimfadt, dhere aecsix intermediate DA effects variables that are

maintained for the DA targets, and these variables are the true input values for the DA

learning threshold function shown in Figure 2.18:

1
1
T
T
T
1

Plan unit DA effect

Request unit DA effect
Nod/Shake Go unit DA effect
Nod/Shake NoGo unit DA effect
Babble Go unit DA effect

Babble NoGo unit DA effect.

Agonism and antagonism, respectively, for these DA effect variables, are implemented

by adding or subtracting numbers between 0 and 1 to the DAlSigihactivation. The

resulting DA effect values are then clipped between 0 and 1. Effectively, the

agonist/antagonist effects shift the range of the DA signal at which LTP or LTD occurs in

the target units (for the Plan, Request, Go and NoGo unitskstaft the activation

thresholdt for the target units (Go and NoGo only; see Figure 2.10).

The DA manipulation results (covered in Section 3.2) utilize a different task set

for training and testing the model in order to simplify and expedite the tggmotess

and conserve data storage space, so that statistics can be collected on the results. Instead

of the full, 4conjunction task set, only one conjunction is learned by the model: C AND

Blue-> Nod in the training and maintenance phases, and C ANB-B Shake in the

reversal phase. 10 different dosages of agonism and antagonism are simulated under 4

different pathway conditions. The dosages are notated as follows:
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1
1

x3: hypaDA 0.3 (subtract 0.3 from DA Signal)
x2: hypeDA 0.2 (subtract 0.2)

x15: hypo-DA 0.15 (subtract 0.15)

x1: hypeDA 0.1 (subtract 0.1)

X05: hypeDA 0.05 (subtract 0.05)

norm: normal DA (use the default DA Signal)
X05: hyperDA 0.05 (add 0.05 to DA Signal)
X1: hyperDA 0.1 (add 0.1)

X3: hyperDA 0.3 (add 0.3)

X5: hyperDA 0.5 (add0.5).

The pathway conditions are as follows:

T

T
T
T

ns/NS: (hype/hyperDA) Nod/Shake (dorsal striatal) pathway (modify
Nod/Shake Go and NoGo units)

b/B: Babble (ventral striatal) pathway (modify Babble Go and NoGo units)
pr/PR: Plan/Request (neocortical) patgwanodify Plan and Request units)

g/G: global hype’hyperDA modification (modify all pathways the same way).

So, there are 37 total DA manipulations: 36 hygad hypeiDA conditions, e.g., ns15

would mean hypdA in the Nod/Shake pathway with 0.15 as sltraction performed;

and 1 norm condition where DA is unmodified. For each DA manipulation, multiple

model instances have data collected for them so that means and standard deviations can

be calculated for that data.

Figures 2.25 through 2.28 show exales of how different DA manipulations

affect the target area DA effects. Figure 2.25 shows the normahfaaipulated) DA
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effect: the DA effects at all of the targets track exactly the DA Signal unit. Figure 2.26
shows the DA effects for the ns2 (N&thake hypeDA 0.2) condition: the Nod and

Shake Go and NoGo units selectively have their DA effects suppressed by 0.2. Figure
2.27 shows the DA effects for the PR5 (Plan/Request HYpe0.5) condition: the Plan

and Request units selectively have their &fects boosted by 0.5. Finally, Figure 2.28
shows the DA effects for the g2 (global hypé 0.2) condition: all DA targets have

their DA effects suppressed by 0.2.
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Chapter 3: Results

Two sets of results were collected for the model. Section 3.4sdiss data
collected under the full task set regime explained in Section 2.2. Essentially, a single
simulation 6subjectdé is studied which is a
the initial weights are randomly set only once and that instancsed for all of the
simulation runs. The model was first trained in the initial training simulation phase. This
trainingphase model was then tested through the maintenance and reversal simulation
phases to determine how well the model could maimaneverse its learning,
respectively.

The results described in Section 3.2 involve testing the effects of selective hypo
and hyperDA level manipulation (see Section 2.3.14) on performance in the training,
maintenance, and reversal simulation phasesl Mi pl e &édsubj ect sb, i . e
randomized model instances, were tested under the DA manipulation conditions under
the three simulation phases with, again, the training simulation phase being followed, in a
bifurcating fashion, by simulation/training the maintenance and reversal phases.
Means and standard deviations were collected for performance measures and measures of

aggregate model activity.

3.1 Full Task Set Results

3.1.1 Training Phase
Figure 3.1 and Table 3.1 show the performance of theehmvr the entirety of
the training phase. Figure 2.2 and Movie 2.1 show the performance over the last 13 trials

which are of the special testing type (see Section 2.2).
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3.1.1.1 Full Task Set Successfully Learned

A quick appraisal of Figures 3.1 aBd shows that the model successfully learns
the full task set. In the final 13 trial testing run, 11 trials (84.6%) are correct responses,
and the remaining 2 (15.4%) are misses, i.e., failures to respond. After around 190 or so
trials (13 simulatonms / 13, 000 itetriameons alll, 8000 3]
successfully learned.

Figure 3.2 shows how the model accommodates the 4 conjunctions. Each of the 4
conjunctions has essentially romerlapping representations in the Plan, Reqaest,Go
units. During the initial babble, random Plan and Request units are excited by the Babble
units, and the Request activity, in conjunction with random gating noise activity,
generates random Go unit activity. The kWTA lateral inhibitory mecharasises this
activity to be focused on a few units, making the representations sparse. If the babble
leads to no behavior being generated, as sometimes happens, then there is no learning. If
the babble leads to a correct behavior guess, then the activaraapresentations get
Astamped ino by the reward. On the other
then the random representations get fdAstamp
behavior, i.e., a correct response in the absence diftdehdhen, leads to reinforcement

of its driving representations when it receives a reward.

3.1.1.2 Conjunctions Can Be Overwritten During Training

However, the punishment of incorrect babbles, as well as the learning of new
conjunctions, can lead to unlearning of previously learned conjunctions. An example of
this is shown in Figures 3.3 and 3.4 and Movie 3.1. In run 2 of the training simulation

phase, the model is tasked to learn C AND Re&hake, but in the process of doing so,
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the conjunction learned in run 1, C AND BlkreNod, is unlearned. Figure 3.3 shows
that between iterations 410 and 470 there is an incorrect (i.e., Nod instead gf Shake
babble, for which the model is punished.

As it turns out, this punishment leads to unlearning. Figure 3.4 shows how. Early
in the babble (at iteration 428) (see Figure 3.4(a)), 2 Plan units are triggered which
participate in the C AND Blue> Nod conunction. The corresponding weights are made
eligible for reward or punishment after this iteration. Not shown, but viewable in Movie
3.1, is the fact that as the babble progresses, a different set of Plan units is activated by
the active Babble unit. ferent weights to these Plan units are made eligible, also, but
the weights made eligible in iteration 428 are the critical ones that lead to trouble. As
Figure 3.4(b) shows, after punishment, these weights are decremented, and it can be seen
that only aconjunction of 2 Plan units could be activated by the Visual Presence AND
Blue WM AND C WM conjunction. As mentioned in Section 2.3.13, at least 3 units
need to be active to trigger Request unit activity, so the previous conjunction has been
effectivelydisrupted. Had the babble resulted in the correct response (Shake), however,
the C AND Blue-> Nod conjunction would still have been unlearned because the 2 Plan
units shown in Figure 3.4(a) would have beeropted by the new conjunction.

Thus, the modek subject to capacity limitations due to the relatively large
number of Plan units (3 to 5) required out of 64 units (8x8) for each conjunction. At
most 21 (64 / 3 rounded) conjunctions could be represented in the Plan layer, and this
would only be pogble if the random unit selection miraculously caused no collisions of
new unit representations with the old ones. In an actual brain, it is likely that there would

be a much larger number of units so that the activation by stimulus conjunctions would

115



be much sparser and far more conjunctions could be learned. Nonetheless, it is likely that

analogous interference effects might be found in prefrontal cortical learning.

3.1.1.3 Novelty Sometimes Drives Learning

It is not always the case that learningriggered by reward delivery. Figure 3.5
shows a curious instance where the model tries a babble (around iteration 100) and fails
to generate a behavior, but nonetheless eventually makes the correct response without
generating another babble (around itera225). Movie 2.1 shows the entire simulation
run this is taken from. lItis, in fact, the first simulation run of the training simulation
phase, when the model is tasked to learn C AND Biudod.

How does the model learn without being rewardedjurés 3.6 (and Movie 3.2)
and 3.7 show how this is possible. Figure 3.6(a) shows the babloleed Plan unit
activity, and that the Plan weights are initially zero. Figure 3.6(b) shows that the weights
corresponding to most of the Plan units activeainafe learned by iteration 150. Figure
3.7 shows the learning of one of these weights: the weight from the Blue WM unit to Plan
unit (6,1). Returning to Figure 3.5, it can be seen that a novelty burst was delivered just
before iteration 150. This wasggered by the third occurrence of the blue square (which
happens to be the last occurrence which triggers novelty). It is not clear why the Nod Go
unit is not initially activated, but it is clear from the fifth and sixth plots in Figure 3.5 that
the Plan and Request units of the model have learned the conjunction due to the-novelty
induced DA burst. Later, the Nod Go unit finally responds to Nod Request activity,
probably due to the decreasing Go threshold as Frustration unit activity drives the DA

leve up. This causes the Nod behavior to finally be performed, so that the Nod Go units,
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as well as the Plan and Request units, are reinforced. Thus, the behavior is finally

learned.

3.1.2 Maintenance Phase: Task Set Learning Maintained

Figure 3.8 and Tdbé 3.2 show the performance of the model over the entirety of
the maintenance phase. Mostly, the model succeeds in maintaining its learning. Of the
73 trials, 54 (74.0%) are correct responses (or repeats in 2 cases), and the remaining 19
(26.0%) are mis=d responses. For each of the trials, the reaction time (RT) is measured
from the appearance of the square to the onset of the response (Nod or Shake). The
average RT over all 73 trials turns out to be 1.12 s (11.2 simulation iterations). This is

the typical performance of the model under normal DA concentration conditions.

3.1.3 Reversal Phase: Rev&al Task Set Successfully Leared
Figure 3.9 and Table 3.3 show the performance of the model over the entirety of
the reversal phase. Figure 2.3 and M@ show the performance over the last 13 trials
which are of the special testing type (see Section 2.2). As with the training phase, 11
(84.6%) of these trials are correct responses (though one has a repeat response, a double
Shake), and 2 (15.4%) arassed responses. After around 70 or so trials (5 simulation
runs [/ 5,000 i tternetoi)onsal/l 500 fs .t hier eraelver s a
successfully learned. Figure 3.10 shows the new Plan, Request, and Go unit
representations for the 4 conjtions. Again, they are neoverlapping. They are also
notably different configurations than the representations in the training (and maintenance)

phase which are shown in Figure 3.2.
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3.2 Dopamine Manipulation Results

Two classes of effects are seamesponse to hyp@nd hypetDA manipulations:

behavioral vigor effects, and learning effects. The main vigor effects to be explained are

1
1
T

Hypo-DA slowing of RT;
Hypo-DA suppression of behavior initiation;

HyperDA speeding of RT.

The learning effects tbe explained include

T
1

Hypo-DA impairment of acquisition (the training phase);

Hypo-DA impairment of acquired performance (the maintenance phase);
Hypo-DA impairment of reversal learning (the reversal phase);
HyperDA impairment of acquisition (the traininghase);

HyperDA impairment of reversal learning (the reversal phase).

3.2.1 HypeDA RT Slow-down

As would be expected iDAladstPasiowadnsonds

reaction time, but whether that effect is seen depends on which DA pathway iednpai

Figure 3.11 shows the effect of DA manipulations on the average RT of a maintenance

simulation phase trial. All RT data is collected from 5 trained (through the training

S i

mean RT by averaging over all trials where there is a response. Nod/Shake pathway

manipulation, which corresponds to the dorsal striatal pathway (SNc to dorsal striatum)

| eads to progressively sl owentagoRidm & t he

equivalent effect, however, is seen when only the Babble pathway (VTA to ventral

striatum) has its DA depleted. At the most extreme conditions (pr3 and pr2), an increase
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iIn RT is seen when the Plan/Request (VTA to frontal cortex) pathwi#-depleted,

but it is an artifact due to the fact, to be discussed in Section 3.2.5, that DA depletion
causes unlearning of the task. The effects of global DA depletion (all pathways) are (in
general, throughout all of these results) reflective of tipeiposition of the Nod/Shake,
Babble, and Plan/Request effects.

ThisDARTs | owing effect is consistent with
and in rat and primate studies where DA antagonists are delivered or DA pathways are
lesioned. Figure 3.1hews resultsofame@mnal ysi s of many human F
patients, both tdopa medicated and unmedicated, performing RT {@#antlett
Gilbert & Brown, 1998) Both unmedicated and medicated patient groups have slower
RTs relative to the control (nelD) groups. However, the-dopa medicated subjects
have less severe RT impairment, as can be seen in the plot by the fact that their
performance is closer to the diagonal line. Parkinsonism, at least at the early stage,
corresponds with hyp®A conditions in the Nod/Shake (dorsal striatal) pathW@gols,

2006) The medicated and unmedicated conditions, then, may be viewed as two different
levels of DA antagonism in the Nod/Shake pathway. Another study of untreated
Parkinsonds patient s tapk@vulferceraimil999nlscasuggdastmp | e r
that PD leads to decreases in reaction and movement time.

In an operant conditioning rat study in wihithe subjects learn to respond to slow
vs. fast stimuli (either visual or auditory pulse trains), selecting one of two levers for a
food pellet rewarqRobbins et al., 1990¥lelivery of different dosages of a DA
antagonist to rats that have learned the task leads to increased reaction times, as can be

seen in Figure 3.13(bottom). Both the time it takes for them to pokentses into the
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food magazine to receive their reward (magazine latency) and the time it takes to press

the correct lever (latency to correct) are increased with increasing dosage of the DA
antagonist. Figure 3.14 shows, for the same study, that draingng sessions on this

same task, rats show decreasing RT as they learn the task. However, RT is significantly
slower, both during the course of the learning and at the end, when the dorsal striatum

(CAUD trace) is DAlesioned through selective injemti of the neurotoxin-©HDA. On

the other hand, consistent with the model results shown in Figure 3.11, DA lesions to the
ventral striatum (NAS trace) do not show a significant increase in RT. This is consistent

with the idea that the dorsal striatunsi® | ect i vely i mplicated in t
pathway that performs learned behaviors, while the ventral striatum is not.

Lesion and druglelivery studies in primates also show that DA depletion leads to
slowing of RT. In a macaque monkey experimghere MPTP was used to selectively
lesion nigrostriatal DA neurons, it was seen (followinddpa treatment necessary to
restore some level of motor activity) that RT was increased in a simple reaching for food
task(Schultz et al., 1989)Another experiment with rhesus monkeys showed that
delivery of either a D1 or D2 antagonist leads to slowed RT on aesieattion task
(Weed & Gold, 1998) D1 antagonism in the moldeould lead to a raising of the Go
unit thresholds and therefore decreased Go unit activity, whereas D2 antagonism would
lead to a decrease in the NoGo unit thresholds and therefore increased NoGo unit
activity.

Figures 3.15 and 3.16 suggest, in termghefmodel, how hyp®A in the dorsal
striatal pathway might lead to slower RTs. The Nod/Shake Request units ramp up in

their activity after the presentation of a colored square (see the first trace of Figure 3.15).
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Once that activity clears a threshalde Request unit is able to activate corresponding

Go unit activity (as seen in the second trace). Simultaneous Request and Go activity,
then, initiates corresponding Init unit activity, as seen in the third trace, and this, in turn,
leads to the executioof the behavior. Hypoas compared with normal, DA conditions
lead to an increase in the threshold for the Go units, shown by the shift of the horizontal
blue line to the red. This leads to a longer interval between the stimulus and the Init unit
activity. Figure 3.16 shows that hyfidA leads to an average decrease of overall Go unit

activity, an effect that is caused by the raised Go unit thresholds.

3.2.2 Hype DA Behavior Suppression

Not only do hypeDA conditions lead to slowed RT, however, bigoad net
suppression of behavior: extreme akinesia. Figure 3.17 shows thaDRypothe
Nod/Shake pathway leads to an increase in the percentage of missed responses, failures to
react to the presented stimuli. Correspondingly, Figure 3.13(top) slaviisefrat study
involving learning of the levepressing task, that the percentage of correct responses for
rats that have learned the task decreases with increasing dosages of a DA antagonist
(Robbins et al., 1990)In the hypokinesia primate study of Schultz and colleagues
(1989) MPTP delivery initially caused extreme akinesia, absence eiiigdited skeletal
and eye movements. Several days-@fdpa treatment were required before the monkeys
were abled react sufficiently to have RT data collected in the task.

In the model, the source of this behavior suppression can be traced to the lowering
of the NoGo thresholds and the raising of the Go thresholds. Figure 3.18 compares
maintenance phaserunsforon o f t he Osubject s®Ab)nder nor m

conditions. The Nod Plan and Request unit activity is basically the same in response to
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the blue squares. However, in the mPA case, the Nod Go E units fire less reliably,
and the Nod NoGo threshoikldecreased and the NoGo units are activated during
stimulus presentations, except periodically.

What causes the hyddA model to respond around every third time rather than
each time? It is notable that after a response that the model is rewardedhcays
misses the next trial. As the Go E units fail to activate in each of these cases, the likely
cause is that the Go threshold is too high. This is a result of the DA level dropping to its
lowest level when the Frustration unit is reset. Insineond response after the rewarded
trial, the Go E units activate somewhat late, but activation of the NoGo units precedes it,
being triggered immediately at the onset of the Blue WM unit. During the actual
responses, the NoGo unit response tends toeladay and the Go E units respond more
quickly and less sluggishly. Figure 3.16 shows how Nod/Shake Dypoonditions lead
to decreased Go unit activity, and Figure 3.19 shows that (Nod/Shake) NoGo unit activity
is increased by Nod/Shake hypd\ conditiors. Through both influences, behavior in
the model is suppressed until the Frustration level drives the DA level high enough to
lower the Go thresholds and raise the NoGo thresholds enough to allow the Nod or Shake

behavior to be gated.

3.2.3 HyperDA RT Speedup

While hypoDA conditions in the Nod/Shake pathway lead to increases of RT,
hyperDA leads to decreased RT, as can be seen in Figure 3.11. Figure 3.20 shows that,
in a simple reaction time experiment involving baboons, moderate dosages (either

chranic or acute) of cocaine, an indirect agonist, lead to decreases(HI&E et al.,
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1994) In a human subjects studysdnphetamine, another indirect agonist, speeded RT
in two discriminative response tagksalliday et al., 1994)

Figure 3.21, mainly, shows how the Nod/Shake mip&rcondition leads to a
decreased RT. Increasing dorsal striatal DA level leads to a decrease in the threshold on
theRegg est unitsd triggering of a correspondi
movement of the horizontal blue line to the red line). Correspondingly, the interval
between the onset of the visual stimuli and the onset of the Go unit, and thus the Init unit,
shiinks. Figure 3.16 shows that Nod Go unit activity, in fact, increases under Nod/Shake
hyperDA conditions, but not under Babble hyg@A conditions. Ventral striatal DA

has no significant effect on RT.

3.2.4 HypeDA Impairment of Acquisition

As Figure 322 shows, hypd®A has a negative impact on learning of the task
during the training simulation phase. The data points represent the percentage of 10
Osubjectsd that success t>Nbd)task. | Thetaskis t he i ni
deemed learned ifn the last 13 trials of the training simulation phase, the model makes a
correct response at least 25% of the time. At extreme-Bypoonditions, both
Nod/Shake and Plan/Request (and global) manipulations lead to extreme likelihood of
failure to learnte task, with pr2 and pr3 conditions effectively disabling learning and
ns3 driving learning chances down to 10% (1 out of 10 subjects). BabbleDiAyso
progressively, but less, disruptive, with the extreme b3 conditions leading to 4 out of 10
subjectdearning the task.

Consistent with the Nod/Shake hyp# impairment, there is evidence that DA

lesions of the dorsal striatum lead to significant deficits in task learning in rat and primate
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studieg(Packard & Knowlton, 2002; Robbins et al., 1990; Yin et al., 2004; Yin et al.,
2005) Figure 3.23 shows that DA lesions of rat dorsal striatum lead to significantly
increased nutbvers of errors made before the rats acquire a dualfressing task
(Robbins et al., 1990)This number of errors ids® increased, but far less, for ventral
striatal lesions. Figure 3.24 shows that lesions made specifically to the medial portion of
the dorsal striatum can lead to impairment of lgwerssing task acquisitiqiYin et al.,
2005) In another rat study,-©HDA-generated lesions to specifically the lateral part of
the dorsal striatum have been shown to disrupt stirmalsisonse habit formatiqFaure
et al., 2005) There is also evider that D1 antagonism, as well as NMDA antagonism
localized to the rat nucleus accumbens core (part of the ventral striatum) leads to
impairment of appetitive task learnig@mith-Roe & Kelley, 2000)

Figures 3.25 through 3.28 suggest how the effects seen in Figure 3.22 are caused
by the structure of the model. Figure 3.25 shows that Nod/ShakeD¥man lead to
failure of the Nod/Shake Go E units to be activated, a consequence of the raised Go unit
thresholds when DA level is increased. The model attempts to babble several times, but
none of the babbles lead to an actual behavior being emitted. (The final Nod behavior is
probably due to novelty learning of the Plan/Request representations e&dyrimi)
The Request wunits try many times to reques
them from driving the Nod Init unit over the activation threshold.

Figure 3.26 shows how Plan/Request h{ph conditions can impair learning. A
specificweight between the Blue WM unit and one of the Plan units is shown. Near the
middle of the run, there is a Hebbian event and the eligibility trace becomes active. A

reward is delivered during this period and this drives the DA Signal level up above the
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LTP threshold. However, the hyiwA manipulation in the Plan/Request pathway leads
to a shifting of the DA effect down so that the reward is unable to drive the effect over
the LTP threshold. Thus, the weight fails to learn, despite reward. GenemlBlath

and Request units fail to learn the necessary representations under extresBAhypo
conditions.

Babble hypeDA conditions may or may not lead to acquisition failure. In both
Figures 3.27 and 3.28, early learning leads to the Plan and Requetarnitsy a
representation for C AND Blue. However, too few Plan units learn the representation in
Figure 3.27 during what is probably a noveliyven babble. No further babbles happen
in this run, probably due to the raised Babble Go unit threshokkdswy the DA
depletion. On the other hand, in Figure 3.28 noveityen learning leads to enough
Plan units being a part of the representation that the model ends up responding to the
conjunction appropriately. (See Section 3.1.1.3 for a discussibovofhoveltylearning

works in the model.)

3.2.5 Hype DA Impairment of Acquired Performance
Not only does hyp®A impair learning of the initial task (C AND Blue Nod),
but in the most extreme cases, also causes actual unlearning of the previoudly learne
t ask. Figure 3.29 shows the effects of D
maintenance simulation phase, are required to make the same Nod response to C AND
Blue. The percent of subjects that have retained the learning is determitaakibyg,
for each subject, at whether the last 13 trials have greater than 25% correct responses. In

the two most extreme Nod/Shake and Plan/Request (and global) cases, loss of learning of
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the task is effectively guaranteed, with the exception of ns3:enhef the 5 subjects
manages to retain the task response.

The rat DAlesioning study of Robbins and colleag&390)provides an
example of how DA impairment of the dorsal striatal pathway can impair a learned task.
Some of the rats trained on the dual lepe¥ssing task are given actual dorsal striatal
lesions, and the others are given sham lesiongrigAse 3.30 shows, when the sham
group is returned to the task, only a few sessions are necessary for the rats to regain their
performance. On the other hand, the dorsal striatald3®ned group requires a
relearning period comparable in length to thi&al training period. In another rat study,
one involving the dorsomedial striatum, temporary deactivation of this area by the GABA
agonist, musicimol, leads to reduced performance of a learnedpmssing task, as
shown in Figure 3.30Yin et al., 2005) Thus, at least a portion of the dorsal striatum
seems to be important in the O6actord perfo

Figures 3.32 and 3.33 show how the loss of the learned task transpires in the
model. As shown in Figure 3.3Rlod/Shake hyp®A leads to unlearning of the Go unit
weights shortly after the model is rewarded for a correct behavior. This happens because
reward resets the Frustration level which causes the DA Signal activity to fall to its
minimum. UndernormalB condi tions, this doesndét caus
the DA level for the Nod/Shake Go units drops below the LTD threshold, and the weights
are unlearned. As seen in Figure 3.33, a similar unlearning transpires for Plan/Request
units when the Pt@Request pathway is Déepleted, though the unlearning happens

immediately upon the appearance of the stimulus because the Plan units are activated
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right away before the Frustration level has had a chance to drive the DA level high

enough to avoid unleainy.

3.2.6 HypeDA Impairment of Reversal Learning

Hypo-DA impairs learning, not only during the training and maintenance phases,
but also during the reversal phase when the model, having been trained successfully on
the C AND Blue-> Nod task, is retragd on the C AND Blue> Shake task. Figure 3.34
shows a similar degradation to the reversal learning as was seen for the initial task
acquisition shown in Figure 3.22. The data points represent the percentage of 10
O0subject sd t hat new (CANDBuUs-* 3hdke)yaskl Ataxtreamet h e
hypo-DA conditions, both Nod/Shake and Plan/Request (and global) manipulations lead
to high likelihood of failure to learn the reversal task, with pr2, pr3, and ns3 conditions
effectively disabling relearning. @ble hypeDA is progressively, but less, disruptive,
with the extreme b3 conditions leading to 6 out of 10 subjects learning the reversal task.

The effect of hypeDA during the reversal simulation phase is effectively a
combination of its effects on theatning and maintenance phases. The effects shown in
Figures 3.32 and 3.33 would cause the initially learned task to be become unlearned, and
the effects shown in Figure 3.25 through 3.27 would also apply, impairing any possible

learning of a new task.

3.2.7 Hyper-DA Impairment of Acquisition
Figure 3.22 shows that not only hypA conditions, but also hypdDA
conditions, can impair learning in the model of the initial (C AND Blaé&lod) task.

Neither Nod/Shake (dorsal striatal) or Babble (ventratsthi hyperDA conditions lead
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to learning failures, but Plan/Request (frontal cortex) hp&rdeads to difficulty
learning the conjunction with only 6 out of 10 subjects succeeding in the PR5 case.

Figure 3.35 shows evVvi d-pressirgtaskkmayber at s o6 |
impaired by Damphetamingldris et al., 2005) The percentage of correct ley@esses
IS, in fact, decreased for both the initial and reveesks.

But how does hypebA impair learning? Figures 3.36 and 3.37 suggest that the
cause might be perseveration on wrong responses. In Figure 3.36, it can be seen that on
the third babble, when the model is trying to learn the C AND Biudod tag, it
randomly chooses the wrong behavior (Shake). It continues for most of the rest of the
simulation run making that wrong response, despite being repeatedly punished. Figure
3.37 shows why: the Plan DA effect level is shifted up by the hipgeeffects in the
Plan/Request (frontal cortex) pathway. Whereas the punisher dips cause the DA Signal
unit level to drop below the LTD threshold, this is not true of the Plan DA effect variable.
Therefore, the punishers fail to cause unlearning, although teeathdition for
plasticity is met, i.e., eligibility trace activity. As Figure 3.38 shows, however, a correct

guess during a babble can allow the model to avoid such perseveration.

3.2.8 HyperDA Impairment of Reversal Learning

As well as impairing thénitial acquisition of the DA manipulation task (C AND
Blue -> Nod), perhaps not surprisingly, hyp@A also impairs reversal learning (i.e.,
learning of the C AND Blue> Shake task). Figure 3.34 shows that, as in Figure 3.22,
neither Nod/Shake or BabhigperDA conditions lead to learning failures, but
Plan/Request (frontal cortex) hypPA leads to difficulty learning the reversal

conjunction. Only 4 out of 10 subjects learn the reversal conjunction in the PR5 case.
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As mentioned in Section 3.2.7 gre 3.35 shows that hypBrA can affect
reversal learning on levgaressing tasks in rafilris et al., 2005) In the model, the
reasons for the failure are similarthe reasons for failure during the initial acquisition,
but there is an added difficulty caused by the fact that the model begins having acquired
the wrong response. Figure 3.39 shows that the model is punished several times for
performing the erstwtel correct response, though it recovers during a correct babble near
the end of the run. Figure 3.40 shows that, again, the problem is that the Plan DA effect
never dips below the LTD threshold, even during punisher dips. Moreover, the model is
in a chrofic hyperDA state where the Plan units tend to be in an LTP mode, always
ready to learn when a Hebbian event occurs. It is as if the model is stuck in a spurious
reward state that is insensitive to the reality of the punishment it receives. What seems to
allow the model to recover is that it makes a correct babble that interferes with the
incorrect response and the new correct response overwrites the representation driving the

wrong behavior.
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Chapter 4: Discussion
4.1 Theory Embodied inthe Model
The neirocomputational model in this dissertation, and the results collected for its
performance on the full task set and under the DA manipulation conditions using the
simplified task set, together suggest a
the learning and performance of stimutesponse tasks. This section will elucidate that
theory and summarize it and discuss its implications.
As laid out in Section 1.1.4, the research questions this dissertation set out to
address were as follows:
1. What is the neural substratetaskoriented behavior selection (TOBS)
2. How are TOBS behaviors learned by this substrate
3. What role does the neurotransmittiepamineplay in the learning and
performance of these behavi@rs
The next three subsections m@witheoretical elements for each of these. The
italicized statements collectively represent a summary of the theory. Section 4.1.4 then

discusses some salient implications of the theory.

4.1.1 Neural Substrate of TOBS
p8uv8uv8u O! AOT 08 O0AOExAU
A frontocortical (dorsal striatalf 6 g pathwagiinvolved inthe performance of
learned TOBS behaviors.
The greerlabeled blocks in Figure 2.6, along with the Action Gating mechanism,
constitute the dorsal striatal pathway. This is the pathway thé#trgately responsible

for initiating a voluntary behavior, either learned or randomly explored.
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The pefrontal cortex (PFC) represents stimulus context (e.g. color and tone working
memory)

The Stimulus Presence, Color WM, and Tone WM units maintaie thes
representationsDetails are given in Section 2.3.5. Similar types of units can be
imagined for other sensory modalities.

PFC (Plan units) and its connection to frontal premotor areas (Request units) mediates
mapping between stimulus context and ocase

As explained in Sections 2.3.7 and 2.3.11, the Plan units respond selectively to
Stimulus Presence, Color WM, and Tone WM conjunctions. Ultimately, the Plan units
seltorganize in their responses so that particular stimulus conjunctions leadibuthsit
representations of 3 to 5 units, such as those shown in Figures 3.2 and 3.10. The Plan
layer activity propagates forward to the Nod and Shake Request units.

Frontal premotor units (Request/Init/Exec) are gatealolprsal striatal (Action Gating)
circuit.

Sections 2.3.7 and 2.3.11 explain the operation of the Request units. The Request
and Init units are assumed to be a part of the same premotor area cortical columns, and
the Action Gating module provides a means of gating or vetoing Requeslyattading
to Nod or Shake Init unit activity. Figure 2.9 shows the architecture of the Action Gating
module, and Section 2.3.8 describes its complex operation.

Frontal premotor units (PMC/SMA) initiate motor responses

Section 2.3.4 explains the Nodhake, and Track Exec units. The Nod and Shake

Exec units are driven by the corresponding Init units (see Figure 2.9). Once the Nod or

Shake Exec units are engaged, they do not disengage until the behavior is completed.
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p8u8us8ge O" AAATI A8 O0AOExAU

A dngulostriatal (ventral striatall 6 b jplatlhwlayentay be involved in triggering of

random explorative behaviorswhanor gani sm i s mot iwda ed and
reward over a long interval

The redlabeled blocks in Figure 2.6, along with the Babble Gatweghanism,
constitute the ventral striatal pathway. This pathway randomly stimulates activation and
behaviors in the dorsal striatal O6actord p
Anterior cingulate cortex (ACC) takes as input reward and visceral state information to
monitor hungerfustration (Frustration unit)

Section 2.3.6 describes the operation of the Frustration unit, Figure 2.7 shows its
input connectivity, and Figure 2.8 shows an example of its dynamic. By default, the
Frustration unit activity increases, but it is resetdoyard deliveries.

ACC (Babble Request units) monitors frustration and novelty in stimuli and triggers
random fAibabbled activation (in Babble unit
conditions

Section 2.3.7 describes the activity of the Babble Requmst It is driven high
by great Novelty or Frustration unit activity. If this activity is gated by the Babble Gating
circuit, it randomly triggers Babble unit activity such that one of the 8x8 units is
activated.

ACC babble units are gated byentralstriatal (Babble Gating) circuit
Section 2.3.9 describes the operation of the ventral striatal Babble Gating module,

and Figure 2.11 shows its unit connectivity.
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ACC (Babble units) outputs to PFC (Plan) and premotor (Nod/Shake Request) units to
trigger explorative behaviors

As Section 2.3.12 explains, a single Babble unit is randomly selected every time a
Babble Exec activation is made. Section 2.3.10 describes the mechanism that generates
neural noise which is used, not only in selecting which Babbtasuactivated, but also
which striatal units are selected in the Action and Babble gating mechanisms. The
random selection of the Babble unit, in combination with random feedforward weights to
the Plan and Request units, leads to random activatior iAlém and Request layers.
Request activation, then, can result in in

pathway.

N s oA s o~ =

p8uvs8uvs8yxy O#OEOEAS8 O0AOExAU
Reinforcement of explorative behaviors that were triggerethégingulostriatal
pathwayallows learnirg of new TOBS stimuligsponse mappings thefrontocortical
pathway.
There is a oO0criticdé pathway extending f
processing units (see Figure 2.7) through the DA Signal unit to the Plan and Request
units and the Go and NoGoitsof the Action and Babble Gating modules. Signals from
this allow the Astamping indo of rewarded r
Astamping outo of punished behaviors.
DA-ergic midbrain cells signal rewartiarning and punishmentnlearning: subtntia
nigra pars compacta (SNc) and ventral tegmental area (VTA)
Section 2.3.13 explains the learning algorithm. As reviewed in Section 4.1.3.2, it

Is the phasic DA signal that is responsible for learning and unlearning.
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DA cells sethe permissivenessf Action and Babble Gating

As explained in Section 2.3.8, and as reviewed in Section 4.1.3.1, the tonic level
of DA is involved in setting the permissiveness of Go and NoGo unit activity in the
Action and Babble Gating modules.
The drsal striatum (Nod/Shake patis)innervated by SNc

This pathway, the nigrostriatal pathway, is the most intensively studied DA
pat hway, probably due to its involvement i
The ventral striatum (Babble path) and PFC (Plan/Request) @at innervated by VTA

The mesoaccumbal pathway has been mostly studied in drug addiction and
electrical reward seltimulation research. The mesocortical pathway has been studied in
working memory research, as the proper function of PFC working nyesiepends on
DA. The precise role of VTA activity in signaling cortical learning, however, needs

more thorough investigation.

4.1.2 Dynamics of TOBS Substrate
Thedr s al striatal ( 6anaitepounrésponspvastateway begi ns
The Plan and Regskafferent weights are initialized to a very small number, so
t hat the dactord pathway is initially unre
Thevent r al striatal (6babbl ed) pathway trigg
recent reward
If the model will not respontb stimuli initially, then any behaviors it selects
must be explorative in nature. The O6babbl

when the organism is motivated to Atry som
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Correct guesses trigger learning alotige dorsal striatal pathwaycausing learning of
stimulus contexto-response mappings
Assuming a correct babble, and sufficient stimulation of random Plan and Request
| ayer representations, reward | eads to fAst
representations in the context of gtenulus.
Sudden reversal of reward conditions triggers punishment which causes unlearning of
old mappings
If, as during reversal learning conditions, the old response patterns are now
punished rather than rewarded, then the old Plan and Regpestentations are actively
Astamped out o.
Under lack of reward under reversal conditions, babble behavieesrrerge which leads
to learning of new correct mappings
When the old responses have been fAstamp
returned to atate where it must relearn the proper stimulus mapping from scratch. This

it does, in the usual way, through random babbling, followed by reward for a correct

guess.

4.1.3 DA Role in TOBS Learning and Performance
p8uv8x8u 41 TEA $!180 211A
Baseline (tonic)r at es of DA actoirviietnyt edi gnoali véaa d toinwi.:

This is one of the primary hypotheses of this dissertation. Overall high levels of
DA signal occur during times when an organism is highly motivated to act, for whatever
reason. Such reasonsymaclude anticipation of rewards or craving or extreme

deprivation. Low levels of DA, on the other hand, occur when the organism is less
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motivated to act, whether because of essential satiation of needs, or because of
withdrawal from its external enviroment.
Frustration (e.g. from unsatiated hunger) and novelty in the environment encourage
action over inaction. Thus, both excite DA release
Figure 2.8 shows how Frustration and Novelty unit activity both excite the DA
Signal level, though the Noveltyunio s ef fect i s phasic i n natu
situations of longstanding nosreward or novelty would encourage an organism to try
out new behaviors, explore new ways of interacting with the environment in an attempt to
find adaptive (or maeadaptive) responses to the stimuli.
The pnic dopamine level regulatéise baseline level of gating allowed by striatal
pathways liigh-DA decreasing Go unit thresholds aimdreasingNoGo unit threshols).
Figure 2.10 shows the influence of DA level oa éhd NoGo threshold activity.
Essentially, higkDA states potentiate initiation of action, whereas-D¥ states
suppress initiation of action. Through different pathways, Nod and Shake, and Babble
initiations are both regulated by DA level.
The onic DA effect in dorsal striatal pathway also regulates RT because of slow cortical
behavior request activity onsdb\\-DA increasingRTandhigh-DA decreasingRT).
Figures 3.15 and 3.21, respectively, show how hgmo hypetDA conditions in
t he 0 a wayaffe@ RTp &lypdDA effects correspond with Parkinsonian akinetic
effects on RT, whereas hypPA effects correspond with psychostimulant motor effects.
Section 3.2.1 describes the hypé RT slow-down, and Section 3.2.3 the hydeA RT

speedup.
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408x8¢@ OEAOEA $!80 211A
Phasic dopamine signals (superimposadhetonic signal) regulate learning in the
frontal cortex and striatum

Section 2.3.13 describes the learning algorithm and Figure 2.18 shows the LTP
and LTD ranges for the two types of DAdat cells.
Phasic bursts, driven by (food) rewards or novel stimuli, trigger LTP in most target areas
(frontal cortexand Ddd o mi nat ed stri atal o6 Godomimaeed | s) an
striatal .6NoGob6 cell s)

Figure 2.18 shows the described rangebasic bursts, in the absence of
significant ambient hyp®A effects, lead to DA levels that rise over the upper learning
threshold.
Phasic dips, driven by punishers, trigger LTD in most target areas (frontal cortex and
Dl-domi nat ed st r id&TPalothess@®60 ntienlaltse)d asnt r i at al
cells).

Figure 2.18 shows the described ranges. Phasic dips, in the absence of significant

ambient hypeDA effects, lead to DA levels that fall below the lower learning threshold.
P8U8B8X8x 3UT T PandEehavigkal InpliGatons2 T 1

DA cel | activityomsiuprtredpmoateisv dtaicamn & i ¢tyoni ¢
learning/unlearning (phasic) signals

This is a statement of the essential hypothesis of this dissertation. Some

implications of the superposition tifese two signals will be discussed in Section 4.1.4.1.
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Depletion of DA can lead tsluggish behavior initiation, slower RT, failure to learn
tasks, and even spurious unlearning of tasks

These effects were discussed in Sections 3.2.2, 3.2.1, 3.2.3.2ab4d
respectively, and shown in Figures 3.17, 3.11, 3.22, 3.29, and 3.34.
Excess DA can lead to faster RT, spurious learning, and failure to unlearn incorrect
behaviors

These effects were discussed in Sections 3.2.3, 3.2.7, and 3.2.8, and shown in

Figures 3.11, 3.22, and 3.34.

4.1.4 Further Implications of the Theory
4.1.4.1 Interaction of Tonic and Phasic DA Effects

Because of the DA learning dynamics shown in Figure 2.18 and the simultaneous
effect on the thresholds of the Go and NoGo units, as shofxigure 2.10, there is an
interaction between the phasic (learning) and the tonic (vigor) DA effects. As Figure
2.10 shows, phasic bursts lead to temporary threshold dips in the Go units which could
allow them to temporarily potentiate new behavio®n the other hand, the same bursts
lead to spikes in the NoGo thresholds which could temporarily disable vetoing power of
the NoGo units. Phasic dips have an even more pronounced effect, temporarily raising
the Go thresholds and dropping the NoGo thrkelshoThis could respectively inhibit
behavior initiation and potentiate vetoing of behaviors.

Conversely, there is also an effect of the tonic DA level on learning. -Bypm
a pathway effectively shifts the DA activity for that pathway with respettieo
thresholds shown in Figure 2.18 down. If sufficiently inhibited, phasic DA bursts will

fail to trigger learning in the Go, Plan, and Request units and unlearning in the NoGo
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units. In extreme hyp®A conditions, the model can be stuck in a defaalteswhere
the Go, Plan, and Request units unlearn during Hebbian events and the NoGo units learn.
On the other hand, tonic hypBYA conditions shift the DA activity for a given pathway
up with respect to the LTP and LTD thresholds. At extreme enoughr-Byj
conditions, the DA level will be stuck by default over the upper threshold, and phasic
dips will fail to drive the DA level below the lower threshold. The result impairs
punishment unlearning and triggers spurious learning after Hebbian events.

Frank and colleague004)have noted hat Par kinsonds patien
unmedicated tend to learn more effectively through punishment, whezsal
medicated patients tend to learn more effectively through reward. The model in this
dissertation could explain this through the tonic/phagiameractions. Specifically,
hypo-DA (the unmedicated PD condition) could lead to a higher likelihood of phasic dips
falling below the LTD threshold of Figure 2.18 (i.e., for Go, Plan, and Request units),
whereas hypeDA (the L-dopa condition) could lehto a higher likelihood of phasic

bursts rising over the LTP threshold.

p8uvs8yYs8e %OI 1 OOETT 1T &£ | AOEOEOU 30A0A0 AT A 3
Why might it have been adaptive for organisms to develop the kind of

tonic/phasic DA control mechanisnestribed in this dissertation? There are distinct

circumstances for an organism when more or less behavioral activity is desirable.

Generally speaking, too little activity will lead to fewer rewards being gained and, in the

most extreme cases, starvatioOn the other hand, too much activity will expend more

metabolic energy that must be replenished through more food intake, and could lead to

more tissue damage. Hyperactivity is likely to lead the organism to engaging in
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physically or sociallyriskyblea vi or s t hat may jeopardize

reproductive success. Having distinct waking and sleeping states addresses some of this

issue, as the waking state allows the organism to forage and mate, whereas the sleep state

allows the organism to oserve metabolic energy and repair (more rapidly) damaged
tissues and replenish depleted neurotransmitter stores.

However, even in the waking state, there are times when more or less activity is
beneficial. When the organism is hungry or when cues ienligonment suggest that
the organism has an opportunity to gain a reward, then it may be worthwhile for the
organism to respond more frequently and easily. In fact, it might be said that when the
organism has the sense that the opportunity cost ofamaisthigh, then the organism
would be better off in a state of higher bdeses| motivation(Niv et al., 2006) On the
other hand, if the organism is satiated and would gain little by further foraging or mating,
then it would probably be preferable ftwe organism to fall into a more restful, less
active state which would conserve energy and keep the organism out of trouble. It would
t herefore be adaptive for an orogeatedi sm t o
motivation6. ated DANudei, with thdir gl@aal heyronhodu@atory
influences on frontal neocortical and striatal circuitry involved in behavior, are well
situated to provide such a role.

The DA nuclei are likewise well placed to perform a role as a global
learning/unlearimg signal. Why might these signals piggyback on each other? It may
have been an evolutionary accident. However, it would have been a fortuitous accident
because, when the organism is in a higitivation state, it probably makes sense that the

organisnshould ignore relatively minor punishers and be more sensitive to even
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potential rewards. On the other hand, if the organism is in arlotvation state, it
would be less adaptive to take risks and, therefore, it makes sense to ignore minor
rewards andbe more sensitive to punishers.

With the above in mind, we may imagine that organisms tend to operate in a
typical range of motivation states during their waking hours, peaking when they are
hungry or in a friendly, potentially rewarding environment; aipgbithig when they are in
a hostile or unrewarding environment or ar
motivation state can be expected to fluctuate within this range, it seems plausible to
suppose that some organcemdomight heendmboi
particular bias they have in their range of motivation may be due to simple, genetically
determined differences in the DA receptor proteins, such that some individuals possess
more sensitive, higheaaffinity DA receptors(te ihott er 6 temper aments
more sluggish, lowea f f i ni ty DA receptors (the fAcol der
Collins(1999)di scuss extraversion (what they term
base DA | evels. The model in this dissert
through a mild global hypeDA effect; on theother hand, certain aspects of
Ai ntroversiono coul d b-BAeffectdnghe matlelt hr ough a
Hyperactivity, sensatiorand noveltyseeking, and tendency to more ftsking and
ignoring of punishment consequences would be expected of-Bypeérdividuals. On
the otherhand hypP A i ndi vi dual s would tend to be |e
more sensitive to punishment, and more-gskrse, perhaps. Genetic DA receptor
factors may set a baseline temperament of individuals, but it ipadsible that the

overall level of reward vs. risk in the environment could foster the development of an

141



individual bias in DA activity, though the potential developmental mechanisms need to
be investigated.

Assuming that serotonin generally has an opmpsifect to DA(Daw et al.,
2002) this may explain the artinxiety and soporific effects of serotonin:H3 may
tend to drive the organism into a lower motivation state which would be less impulsive
and more relaxed, though not necessarily one of increased positive affect. (In fact, hypo
DA or hyperserotonin vauld probably both lead to states of anhedonia and/or apathy,
although 5HT may reduce stress response through its effect on the hypothalamic
pituitary-adrenal axigPanksepp, 1998)

It is a tempting hypothesis that strong emotions that motivate immediate action
are likely to temporarily boost the tonic DA signal. Amgation, anger, fear, sexual
desire, or acute pain or distress should lead to a willingness of the organism to expend
more effort to take actions that address the strong emotions. On the other hand, chronic
depressive states (e.g. grief or physical egtian) may inhibit the DA signal temporarily
so that the organism tends to behave in a more reserved aadersie fashion.

The above hypotheses potentially suggest means of pharmacological intervention
under various affective disorders, or at leasijate a preliminary explanation of how the

currently prescribed drugs may exert their motivational and affective influences.

4.1.4.3 Pathway Dependence of DA Effects

An important observation this dissertation emphasizes is that the effects of
pharmacological (or otherwise) manipulation of DA level will depend on which DA
pathways are affected. Teasing apart the distinct roles of the various DA (and other

neuromodulatg pathways is a major task that is fruitful to undertake at this stage.
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Delivery of globallyacting agonists or antagonists is a blunt instrument of clinical
intervention. In the worst case, delivery of a nonselective (D1/D2) antagonist can lead to
suchglobal impairment of motor behavior that the therapeutic benefits are outweighed by
the sideeffects. Development of BD&pecific neuroleptics, for example, allowed more

selective influence (presumably of the NoGo pathways). It would be beneficial if a

technology could be developed that <coul d,

DA receptor activity selectively in the dorsal striatal pathway, at least at the early stages
of the disease when only the dorsal striatal pathway is impaired. kemtpauffering
high-anxiety depression states, it might be useful to selectivehabtagonize the BA 25
portion of the anterior cingulate cortex. (It might also be useful for depression if
serotonergic drugs could be developed that selectively affidlcT® s i nf |l uence
hypothalamiepituitary-adrenal axis, so the stress response is selectively inhibited.)

How might pathways be selectively agonized or antagonized? One possibility
might be that new drugs could be developed that are selective fificspathways. It is
not apparent to the author how this might be done, though it would be theoretically
possible if the DA receptor-@roteins had subtle distinctions in the different pathways
that were analogous to the differences currently recogniziwadebn DA receptor types.
If every pathway effectively had its own receptor type, then a drug might, in theory, be
developed selective for each pathway.

Given current (or neduture) technology, the only alternative that occurs to the
author involves dective surgical implantation of a device that releases or stimulates the
release of DA in a particular pathway in order to allow selective agonism. For

antagonistic effects, the implant would need to inhibit, in a pattspagific fashion,
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release of theeurotransmitter. Such an implant may be a better alternative than
selective lesioning, as its effects could perhaps be reversed or progressively tweaked in
the manner that drug dosages may be progressively modified. In the distant future,
perhaps locaed genetic manipulation of neuronal or glial cells in the pathological areas,

or outright grafting of healthy cells, may be an option.

4.1.4.4 Hyper-DA, Perseveration, and Spurious Learning

An interesting implication of the model with respect to psytihmgant effects is
the idea, observed in Sections 3.2.7 and 3.2.8, that{feonditions may lead to a
chronic spurious reward state in the organism. This state leads to both spurious learning
during an incorrect babble, and a perseveration of wresgonses in the face of
punishment. It is plausible that this kind of effect could be seen during psychostimulant
intoxication. However, it is not clear what DA pathway is responsible for this effect.
The model suggests that the V-Iéfrontal corticalpathway is responsible for the
perseveration; however, cocaine, for example, does not have much effect on the
mesocortical pathway, due to the lack of DAT reuptake in frontal neocortex. However,
some indirect effect due to VTA DA cell excitation, perhaggsed by mesoaccumbal

pathway activity, cannot be entirely ruled out.

4.1.4.5 Novelty-Induced Learning and Behavior

Extant work on phasic DA learning effects mentions, but does not place much
emphasis on, the potential role of novelty in inducing legrniNovelty is likely, also, to
induce spontaneous behaviors. Both effects are seen in this model.

But why should novelty stimulate spontaneous behavior and learning? What is

the adaptive value? Generally, when a novel stimulus is encountered byaisiogt
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represents a perceived change in the organ
better or for worse is not immediately app
interest to be more alert and to expend more effort to learn moretabatimulus to
determine if it is a potential reward or a threat. Engagingspecific explorative
behavior patterns in the presence of salient stimuli encourages the organism to learn more
about then{lkemoto & Panksepp, 1999)

In addition, T might be useful for the stimulus to trigger learning, at least during
the first occurrences when it is still considered novel. This would stimulate the formation
of a default learned response. This would mean having an optimistic bias initially
towardsa novel stimulus, perhaps, provided there are no obvious threat cues
accompanying it. If the encouraged behavior was the wrong one, or the new stimulus
emitted threat cues later, then this default learned behavior could be unlearned, and
avoidance behaot could perhaps be learned later, in its place.

Without an optimistic bias towards novel stimuli, organisms may be less likely to
capitalize on new advantages entering the environment. There may be another pathway
that exists, however, that can leanmtap novelty to anxiety and fearful responses. (The
amygdala seems a likely candidate area for performing this mapping, and this in turn
could trigger activity in the hypothalarapituitary-adrenal axis.) Chronically hostile
environments might cause thgess responses to novel stimuli to overcome the

explorative tendencies encouraged by the DA pathways.

4.2 Model Predictions

Primarily, the model was constructed to explain known effects of-reud

hyperDA manipulations: in particular, effects on RTboth hype and hypeiDA
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conditions; and the impairment of learning caused by Hypa:onditions in the dorsal
striatum, such as occurs in Parkinsonism. Table 4.1 summarizes the results covered in
Section 3.2. Each entry in the table represents a fdtest that might be performed in
animal subjects and the predicted result of that test. Some of the effects shown (for
example, the dorsal striatal hyA slowdown of RT) have been clearly demonstrated
i n the I|iteratur e, ,basystemabicstudydasbeen perorméds k no
comparatively manipulating the specific anatomical pathways with DA antagonists and
agonists, though Robbins and colleag(i&¥0)compare two of these pathways for
hypo-DA conditions (dorsal vs. ventral striatal). Doubtless, there are other DA pathways
not studied or modeled here that it would also be useful to matepsuch as the VT-A
to-amygdala pathway. Likely, each of these pathways has its own set of DA executive
control and learning effects.

Some of the salient behavioral effects predicted by the model that bear further
investigation include the effects ofgny and hypeiDA manipulations of the VTAo-
frontal cortex pathway on learning, and the triggering by novel stimuli of both
explorative action and learning. The model would suggest that mesocortical DA
depletion should disrupt learning offSmappings tat require neocortex. Some
brainstembasal ganglia pathways might still allowRSlearning, but more flexible tasks
requiring frontal neocortical implementation may be much more difficult to learn.
Moreover, the model would predict that DA depletionha PFC and premotor areas
may actually cause unlearning/forgetting of existing task mappings. The model would
also predict that too much DA activity along the mesocortical pathway would tend to lead

to spurious learning and behavioral perseveration,sasisked earlier. Generally, the
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effects of DA on frontal cortical learning need to be more closely investigated. As
already mentioned (in Section 4.1.4.5), the model predicts that both behavior initiation
and learning may be triggered by novel stimilhe mesocortical pathway, again, would
be important in the learning, and the ventral striatal (cingulostriatal) pathway is likely to
be important in novelty cueing of explorative behaviors.

Probably the most interesting and useful predictions made bydtiel melate to
specific neural mechanisms that are behind the observed performance and learning
effects. One of the key mechanisms proposed in this dissertation is the cingulostriatal
Obabbled pat hway for produci ngquasikapdbor at i ve
behaviors are generated and what circuits are involved is an area that deserves more
investigation in animal studies. The model also suggests a mechanism (depicted by
Figures 3.15 and 3.21) by which the level of dorsal striatal DA regula¢eRT for
| earned responses. I n short, the idea is
substantial period of time to build up. T
tonic DA activity and this will cause the latency betweenthst art of Ar eque st
buildup and basal ganglia gating of a behavior to vary with DA level.

The model also makes some predictions about the cellular mechanisms of
learning that deserve closer investigation. The existence of synaptic memory for
AHebi an event so, i.e., the specific kind of
be tested for in animal studies, both in vivo and in vitro. A further interesting feature of
the learning algorithm in this model is the heterosynaptic competitainis used in the
LTP of the learning synapses. One problem with Hebbian learning without competition

is that weights may grow over a period of time so that the unit is hyperactive in its
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response and responds in a logical OR fashion to a wide vafigtiynoilli so that its
response i s, in a sense, too Opromiscuous®6
Heterosynaptic competition, however, allows neural units to specialize more in their

response to particular stimuli or stimulus conjunctions. Indisisertation, the bounded

arborwei ght total allows | earning of specific

conditions. (See Section 2.3.13 for further discussion of this.)

4.3 ResearchContributions

This dissertation has attempted to formulateddipinary theory of the learning
and performance of taskiiented behavior selection, and the role played by dopaminergic
neuromodulation. The model developed here embodies an explanatory theory (discussed
in Section 4.1), and makes some predictions (dsed in Section 4.2) regarding likely
behavioral consequences of DA manipulations and also of possible neural mechanisms
involved in task learning and performance. Probably the key novel prediction is that
there exists at least one corticostriatal pagf@varobably cinguleventral striatad that is
involved in generation of exploratory behaviors, a pathway that allows the trial
component of triaanderror instrumental learning. The model developed is capable of
reversal as well as initial learning of anpile SR task set. Another key contribution of
this research and the model is the emphasis that it places on the importance of separate
anatomical DA neuromodulatory pathways. It is an initial attempt to develop a
neurocomputational model that recogniaesarray of distinct pathwagependent DA
effects and fits them into a larger hypothesis of the function of centralized dopamine
release. Itis a necessarily incomplete picture at this stage, but the author hopes a possible

beginning to develop an integive behavioral functional theory of one of the most
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clinically important of neurotransmitters. Additionally, the model may suggest some
components of a general learning architecture for artificial intelligence, an architecture

that is grounded in an anal learning and comparative neuroscience model.

4.4 Limitations of the Model

Given the scope of the model proposed in this dissertation, it is inevitable that
there is a good deal that is incomplete or that may corroborate uneasily with recent data.
This section will discuss limitations of the modeling of the actor, babble, and critic
pathways, and finish with a discussion of general issues that apply to all three pathways.

Some suggestion will be made of how future research might address some &isiese
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Due to time limitations, less detail was modeled of the working memory
apparatus than was originally planned. One consequence of this is that the effects of
hypo- and hypeiDA on working memory maintenance ampldating are not modeled,
though such effects would be significant. Four ranges of mesocortical DA level were
planned for modulating the effects of working memory:

1 No maintenance range: the lowest range of PFC DA level. Working memory fails
to retain itstrace, disappearing after the afferent input vanishes. Much evidence
suggests that some level of tonic DA is necessary to stabilize recurrent excitation
that allows working memory maintenan@ unel & Wang, 2001; Durstewitz et
al., 1999; Durstewitz et al., 2000; Gao et al., 2001)

1 Buffer maintenance range. Above the no maintenance range, working memory

remembers only the lagerceived input with new stimuli owsriting the old
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traces, but without new inputs the old trace is maintairf@dnaka, 2002jnodels

such a dynamic at an intermediate level of D1 activation.

1 Exclusive maintenance range. Above the buffer maintenance range, working
memory traces are resistant to disruption by new or otherwise distracting stimuli.
This is the type of maintenance generally modeled in other research, e.g.
(Durstewitz et al., 1999)

1 Overload disruption range. Above the exclusive maintenance range, the high
level of DA disrupts the existing working memory trac&at studies have
confirmed that too much D1 receptor activation disrupts working me (datyrt
et al., 1997) This is likely due to a potentiation tife GABAergic interneurons
in the cortical columngBrunel & Wang, 2001; Muly 11, Szigeti, & Goldman
Rakic, 1998)

The working memory disruptions caused by sufficient hyga hypeiDA in the
mesocortical pathway would cause addial failures of maintenance performance,
though not necessarily unlearning of the task, once it has been acquired. Naturally,
acquisition of the task or reversal learning would be both difficult if working memory
were not functioning correctly.

Not only DA modulation, but the actual circuitry of working memory was not
modeled for lack of time. Because of the need to maintain multiple working memory
traces in certain tasks, there are I|likely
whose maintenanand/or update may be independently gated through some type of
dynamic gating mechanism involving the associative striatal pathways through the basal

ganglia(Frank et al., 2001; O'Reilly & Frank, 2006 he dynamic gating mechanism
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presumably would be driven by the same reward/punisher learning as was developed in
this model. PFC modality represatibns would not be determined a priori, as they are
in the dissertation model, but would be learned in aaglinizing fashion.

More recent data suggests that the dorsal striatal pathway actually has at least two
distinct components: a dorsolateraltpatvolved in habilearning(Faure et al., 2005;
Yin et al., 2004)and a dorsomedial pathway involved in gdakected learningYin et
al., 2005) When an instrumental respens initially being learned, the gedirected
learning pathway seems to be involved; the evidence is that performance of the required
behavior is contingent on the outcome reward maintaining its hedonic(Yafuet al.,
2005) When a food outcome is devalued, either through satiation or through pairing of
the food with a nauseiaducing substance, the animal ceases to perform responses that
are still under goatlirected control. Fixedatio reward schedules tend to yield cangd
goatdirected performance of the response. Vartabt® reward schedules, however, or
overtraining, often lead to habit formation which is resistant to outcome devaluation. The
acquisition and performance of habituaRSesponses, then, is meadtby the
dorsolateral habitearning pathway. By contrast, the model in this dissertation treats alll
SR learning like habitearning. A more complex and realistic model needs to be
developed exploring the dorsomedial gdakcted learning pathway amsbdeling how
the goaldirected and habiearning pathways interact, and also how these two pathways
relate to the ventral striatal pathway/s involved in explorative behavior generation.

One notable lacuna in the model is the matter of task switching. cogpically,
the RT for responses increases after a new task is sigivdedell, 2003; Rogers &

Monsell, 1995; Wylie & Allport, 2000) Inthe dissertation model, there is no latency for
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taskswitching, nor any interference effects between tasks. In the fuls&skhe switch

between the BLUESELECT and REESELECT tasks entails no RT penalty or switch

latency. In order to bring such daiicies into a model, one solution might be to require

the dynamic gating mechanisms of working memory to be subject to a gating latency, in

the same manner that Nod or Shake gating is in this model. In that cas®/Aypdhe

working memory dynamic gatg striatal pathways could lead to slower update of which

wor king memory #fAstr i peBAxoulspeed thaswiching.i The d, a
likely importance of DA in switching time is mentioned(@ools, 2006)

One final potential @&aicioré@pagpmadchwiay mesnit
that PFC plasticity may be LTD by default during Hebbian events and normal DA levels.
Some of the literature suggests that LTD is the default response when cells are stimulated
at high frequencie.aw-Tho et al., 1995) The consequence of this would mean that
Plan and Request units would tend to unlearn their representations unless they were
rewarded. It may be, however, that background neocortical extracellular DA levels under
normal conditionsrelieve this default LTD conditiofMatsuda et al., 2006)More

investigation is needed.
1818¢ O" AAAT A8 O0OAOExAU ) OO0AO

Although DA affects the Babble Go and NoGo units of the model, there is an
additionalDA~er gi ¢ pat hway | i kely to be involved
VTA connection to ACC. In a rat experiment, both D1 and NMDA receptors need to be
active in medial prefrontal cortex (which includes ACC) in order for appetitive

instrumentaléarning to develofBaldwin et al., 2002) It may be that the disruptions to

acquisition of task sets due to hyp@ conditions may be more severe than what is seen
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in Figure 3.22. Imay also be the case that the neural correspondent of the Frustration
unit may require learning that is Bdependent in order to correctly drive babbling.

Anot her i mprovement that should be made
way of utilizing memoy in order to remember the laisted responses. The primate
study of Procyk and colleagu€000)suggests that the subjects remember previously
tried responses and do not tend trectenrroneo
with the ventral striatum and ACC makes this a plausible source of the memory, though

PFC working memory could be another medium for traces of the tried responses.
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Another feature of the model that was planned, bufuily developed, was a
more detailed o6critico (19®)ddveloped a model@&ano wn an
adaptive critic which implements the dynamics of phasic burstsigs. (The
conditions for DA bursts and dips were reviewed in Section 1.2.3.4.) The critic used in
the present model is neadaptive and differs in its dynamics from the phasic activity
dynamics seen in animal studies. In the present model, thawa@reditionally DA
phasic bursts only during rewards and phasic dips only during punishers. In a more
realistic critic system, fully predicted rewards would not trigger phasic bursts, but omitted
rewards would lead to phasic dips. Moreover, stimulus thet predict reward would
lead also to phasic bursts. Future work on this model should involve integrating a more
realistic critic with the rest of the model, one capable of the learning of reward e@es (S
learning). This would be a separate ventratsi at a l pat hway from t he
another pathway subject to its own set of hygad hyperDA effects. HypeDA in this

pathway would likely disable reward cue learning and possibly even lead to unlearning of
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the cues. HypeDA in this pathway wuld probably lead to spurious cue associations

with reward.

4.4.4 General Issues

As was discussed in more detail in Section 1.2.3.5, modeling of the midbrain DA
cells as a single compartment is probably an oversimplification. The SNc and VTA
compartmert are likely to be functionally distinct, and there are also likely to be
multiple VTA compartments. How activity in these compartments (and their efferent
pathways) is related would be a useful direction to explore. Based on the literature
review conduted by this author, it seems a likely hypothesis that there exists a hierarchy
in the mesostriatal axis, with the nigrostriatal (Sitaorsal striatum) pathways
controlling the narrow responses of the organism to particular contexts, and the
increasinglyventromedial portions of striatum innervated by VTA exerting a training,
activating, and regulating influence over the more dorsolateral striatal pathways. The
habitl ear ni ng O6actor é6 pathways are probably t
dorsomediagjoatdirected learning pathways. Ventromedial to these would be the
proposed Obabbled pat hway!/ s. Ventromedi a
(accumbal) pathways involved in selection of goals. Still further ventromedial would be
pathways involvedn Pavlovian (S0) learning of the relation of stimulus cues to
impending reward, as well as pathways involved in arousal of the more dorsolateral
pathways in response to incentive cues. It seems to this author that a proper global
understanding of mammah behavior control requires continued and increasingly
detailed investigation into the basal ganglia apparatus and its relationship to the rest of

the brain. The royal road to the (volitional) soul does indeed run through the striatum.
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The brainstem, éncephalon (thalamus and hypothalamus), and neocortex all funnel
information into the striatum, and the output nuclei of the basal ganglia send controlling
connections back to the brainstem and (through the thalamus) to the neocortex. This
control systentearns through reinforcement signals that are themselves under basal
ganglia control. Brainstem, diencephalon, and basal ganglia together constitute a flexible
learning machine, which, however, lacks the memory mechanisms of the hippocampus,
amygdala, ath PFC, the complex sensory analytical processing of the posterior
neocortex, and the higlavel motor control of the frontal neocortex, including PFC.
Cerebral cortex provides layers of refinement and flexibility (and possibly sentient
awareness) to a ebehavior system which is already flexible and adaptive.

One avenue that was considered, but not fully developed, in this dissertation was
an exploration of the effects of Band D2specific agonists and antagonists. The roles
of D1 and D2 receptors evén the striatum are not fully understood, though, as Section
1.2.3 shows, much has been already elucidated. One complication that prevented the
author from modeling D1 and D2 manipulation and collecting data for it is the biphasic
nature of D2 receptanfluence as DA levels increagérank & O'Reilly, 2006) At low
DA extracellular levels in the striatum (and consequently at low dosages of D2 agonist
delivery), D2 receptor activity primarily consists of th& Butoreceptors on the DA cell
terminals. The autoreceptors inhibit DA release, so the behavioral and learning effects
are primarily inhibitory. However, at higher D2 agonist dosages, the postsynaptic D2
cells in the NoGo striatal units become activated] this effect is disinhibitory.
Naturally, this complicates the behavioral effects of striatal D2 agonism and antagonism

requiring distinctions be made between low and high dosages.
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Another general limitation in the model is that extracellular DA keaeé not
adequately modeled at the respective DA targets. The 6 DA effect variables are a
beginning at modeling this, but what is missing is extrinsic and intrinsic modulation of
the extracellular DA levels at the DA cell targéseher & Burnod, 2002; Katz, 1998)

It is not only the rate of DA cell firing that determines DA release, but glutamatergic

activity around the DA cell terminals. As an example of extrinsic modulation, PFC

activity is believed to leadtlarger striatal extracellular DA concentrati¢@ace,

1991) As a (proposed) example of intrinsic modulation, PFC activity may locally

stimulate VTA DA release into PHChadderdo& Sporns, 2006; Dreher & Burnod,

2002y t his may provide a |l ocal control over
in addition to more global DA signaling, local control at DA terminals needs to be

accounted for.

Another factor that will ultimately need to be accounted for is the array of
influences of other neurotransmitters on activity and plasticity at the DA targets.
Serotonin, norepinephrine, and acetylcholine, and various neuropeptides all probably add
additional influences to the discussed DA influences. For example, in neocortex,
acetylcholine is likely to be important in plasticity, as it has shown to be in bat auditory
cortex(Ji & Suga, 2003xand human motor cortdkuo, Grosch, Fregni, Paulus, &

Nitsche, 2007) How acetylcholine and DA interact in control of cortical plasticity is

something that ought to be investigated in the future.

4.5 Future Research

This dissertation has developed a complex neurocomputational model which has

attempted to begin to explain the division of labor of cortical, basal ganglia, and midbrain
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areas involved in task learning and execution. Due to the limitations mentioned in th
previous section, as well as yet unknown factors, it is essentially a work in progress. The
most important immediate next steps that should be taken with the model involve
incorporating known pathways and neural mechanisms that are currently not modeled

Most important is incorporating the adaptive critic mechanisms that were modeled
in (Brown et al., 1999) This would allow the model to predict rewards and respond
according to observedward and punisherelated phasic DA dynami¢Schultz, 1998;
Ungless et al., 2004)Whereas punishers are currently needed to trigger reversal learning
in this model, a properly functioning adaptive critic would cause reward omissions to
lead to phasic dips and, therefore, extinction of behaviors. Fully predicted rewards would
also cease to trigger phasic bursts. Cues predicting rewards would also trigger pha
bursts which, in turn, could lead to learning of behavior sequences through backwards
chaining. Hype and hypeiDA effects in the ventral striatal pathway involved in th® S
learning for reward prediction would need to be analyzed.

The nextareaofipr ovement in the model woul d i
on working memory as mentioned in Section 4.4.1. First, it might be useful to keep the
simple mechanisms of WM currently used, but apply thengye modulation mechanism
explained in 4.4.1. At later stage, however, the mechanisms for the dynamic gating of
the working memory traces need to be developed. It seems that there could be at least
two (associative) striatal pathways (or sets of pathways) involved in working memory: a
pathway which proides the baséevel of DA to the recurrent excitatory circuits that
maintain the working memory traces, and another pathway that is involved in switching

on and off the maintenance of the working
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release at VTA termals locally in PFC. Much effort will probably need to be devoted
to development of a dynamic gating mechanism that works with the rest of the model,

though the work would probably build on the mechanisms develog€iReilly &

Frank, 2006) Hypo- andhyper DAG6s ef fect on these pat hways

investigated.

Modeling of D1 and D2 agonism and antagonism is probably the next most
important modification to make. If done correctly, it would allow the model to be useful
in making predictions aboutMreceptorspecific drugs and their effects on TOBS.
Effectively modeling the biphasic effects of D2 receptors (mentioned in Section 4.4.4)
would be an important step in investigating D1 and D2 agonism/antagonism.

More investigation also needstobe madet o t he det ail s of
DA modulation of ACC needs to be modeled. More work also needs to be done on the
learning dynamics of explorative behavior generation. It is likely that this system needs
to learn to respond to particular incestcues, and may need to later unlearn this
(babbling) response once adaptive speciiR Biappings have been learned. The ability
of animals to remember lagied responses suggests that some mechanism needs to also
be devel oped t pathvay taketaccount bof previods aribstsd thabit can
avoid repeating them.

Finally, it would be useful to begin to model the distinct dorsal striatal pathways:

i.e., the dorsolateral hadiarning and dorsomedial gedirected learning pathways. In

addtion to evidence already cited about these pathways, there is also some evidence that

DA level may shift the balance between habitual andhatritual behavior by affecting

the relative activity in the striosomal vs. the matrisomal striatal (e#tson & Killcross,

158

t

h



2006) High DA may lead to an emphasif striosomal cell activity which is believed to

be more involved in habitual actions. No doubt, more information will continue to arrive
on basal ganglia function that will allow more detailed and representative models of
TOBS related striatal pathwaye be constructed.

In addition to making continual refinements of the model developed here and the
associated comparative neuroscientific theory, it may be useful to apply this theory in
other ways. Especially promising may be the possibility of embgdii@ model in a
learning robot. It is hoped that the model developeddharel successive versions that
might be developed fromdt could constitute the nucleus of a machine learning
architecture that would allow the development of robots and virtual athoimat are

capable of general tag&arning.
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Table 11 Abbreviations used in the dissertation

5-HT Serotonin

ACC Anterior cingulatecortex

ADHD Attention deficit hyperactivity disorder
Al Artificial intelligence

BA Brodmann area

BG Basal ganglia

CR Conditioned response

CS Conditioned stimulus

DA Dopamine

DAT Dopamine transporter

ERN Error-related negativity

FEF Frontal eydields (lateral BA 8)

FPC Frontopolar cortex (BA 10)

GPi Globus pallidus internal segment

GPe Globus pallidus external segment

IT Inferotemporal cortex

KWTA k winnerstakeall

LDT Laterodorsal tegmental nucleus

LTD Long-term depression

LTP Long-term potentiation

M1 Primary motor cortex

NAC Nucleus accumbens

NE Norephinephrine (noradrenaline)

O Outcome

OFC Orbitofrontal cortex

PD Par kinsonds diseas
PFC Prefrontal cortex (dl = dorsolateral, etc.)
PMC Premotor cortex (lateral BA 6)

PPC Posterior parietal cortex

PPN Pendunculopontine (tegmental) nucleus
R Response

RT Reaction (response) time

S Stimulus

s’ Discriminative stimulus

SEF Supplementary eye fields (medial BA 8)
SMA Supplementary motor area (medial BA 6)
SNc Substantia nigra pars compacta

SNr Substantia nigra pars reticulata

STN Subthalamic nucleus

TOBS Taskoriented behavior selection

UR Unconditioned response

UsS Unconditioned stimulus

VTA Ventral tegmental area
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Table 2.1 Simulation movies availablenline.

Movie

URL/s

2.1Full task set training phase
performance

http://gchadder3.com/dissmovies/mov2sl.wmv

(compressed: ~ 700 K)
http://gchadder3.com/dissmovies/mov2slbest.v

(uncompressed: ~ 4.3 M)

2.2 Full task set reversal phase
performance

http://gchadér3.com/dissmovies/mov2s2.wmv

2.3 Neural noise generation
mechanism performance

http://gchadder3.com/dissmovies/mov2s3.wmv

2.4 Full task set babble activation
during Eb/Red> Nod learning

http://gchadder3.com/dissmovies/mov2s4.wmv

2.5Example of conjunction
learning: C/Red> Shake

http://gchadder3.com/dissmovies/mov2s5.wmv

2.6 C/Red-> Shake learning: Plan
unit weight modification

http://achadder3.com/dissmovies/mov2s6.wmv

2.7 C/Red-> Shake learning: Shak
Go unit weight modification

http://achadder3.com/dissmovies/mov2s7.wmv

2.8 Example of conjunction
relearning: C/Blue> (Nod to
Shake)

http://gchadder3.com/dissmovies/nas8.wmv

2.9C/Blue-> (Nod to Shake)
relearning: Plan unit weight
modification

http://gchadder3.com/dissmovies/mov2s9.wmv

3.1 Example of accidental
conjunction overwriting

http://gchadder3.com/dissmovies/mov3sl.wmv

3.2 Example of novelty driven
learning: Plan unit weight

http://gchadder3.com/dissmovies/mov3s2.wmv

modification
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http://gchadder3.com/dissmovies/mov2s1best.wmv
http://gchadder3.com/dissmovies/mov2s2.wmv
http://gchadder3.com/dissmovies/mov2s3.wmv
http://gchadder3.com/dissmovies/mov2s4.wmv
http://gchadder3.com/dissmovies/mov2s5.wmv
http://gchadder3.com/dissmovies/mov2s6.wmv
http://gchadder3.com/dissmovies/mov2s7.wmv
http://gchadder3.com/dissmovies/mov2s8.wmv
http://gchadder3.com/dissmovies/mov2s9.wmv
http://gchadder3.com/dissmovies/mov3s1.wmv
http://gchadder3.com/dissmovies/mov3s2.wmv

Table 3.1Full task set training simulation phase run summary

Run# |l t eratiTri al|Events
1 1-1000 1-15| Training on C/Blue>Nod; learned successfully
2 10012000 16-30 | Training on C/Redé>Shake; not learned
3 20013000 31-44 | Training onC/Red>Shake; learned successfully
4 30014000 45-59 | Training on Eb/Re¢>Nod; learned successfully
5 4001-5000 60-74 | Training on Eb/Blue>Shake; learned successfu
6 50016000 75-88 | Testing on all conjunctions; C/BleeNod, C/Red
->Shake notvorking
7 60017000 89-103 | Training on C/Blue>Nod; not learned
8 7001:-8000| 104118 Training on C/Blue>Nod; learned successfully
9 80019000 119133/ Training on C/Re¢>Shake; not learned
10| 9001:10000| 134148| Training on C/Reé>Shake; learneduccessfully
11| 1000111000| 149163| Testing on all conjunctions; Eb/RedNod not
working
12| 1100112000| 164178| Training on Eb/Reg¢>Nod; not learned
13| 1200313000| 179192 | Training on Eb/Red>Nod; learned successfully
14| 1300%114000| 193206 | Testing orall conjunctions; all working
15| 1400115000 207-221| Testing on all conjunctions; all working
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Table 3.2Full task set maintenance simulation phase run summary

Run # I teratiTr i al|Events
1 1-1000 1-15| 12 Hits, 3 Misses
2 10012000 16-29 | 14 Hits
3 20013000 30-44 | 10 Hits, 5 Misses
4 30014000 4559 | 9 Hits, 6 Misses
5 40015000 60-73 | 9 Hits, 5 Misses
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Table 3.3Full task set reversal simulation phase run summary

Run# | t erat |Tr i al|Events
1 1-1000 1-15 | Trainingon C/Blue>Shake; learned successfully
2 1001-2000 16-29 | Training on C/Ree>Nod; learned successfully
3 20013000 30-44 | Training on Eb/Red>Shake; learned successfully
4 3001-4000 45-57 | Training on Eb/Blue>Nod; not learned
5 40015000 58-72 | Trainingon Eb/Blue>Nod; learned successfully
6 50016000 73-87 | Testing on all conjunctions; all working
7 60017000 88-102 | Testing on all conjunctions; all working
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Table 4.1 Summary of DA manipulation results discussed in Section 8c®on speed

(in aninverse way) was measured by RT (see Figure 3.11). Behavior initiation was

measured (inversely) by the percent of missed responses (see Figure 3.17). Task
acquisition was measured by the percent of
-> Nod task (see Figure 3.22). Task learning maintenance was measured by the percent

of 6édsubjectsod that maintained | earning of

| earning was measured by the percent of O0s
Shake task (see Figure 3.34). Each table entry represents a test that could be performed

on animal subjects, and results the model would predict. ds = dorsal striatdDAype

= ventral striatal hyp®A; nc = neocortical hyp®A; g = global hypeDA; DS = dorsal

striatal hyperDA; VS = ventral striatal hypeDA; NC = neocortical hypebA; G =

global hyperDA.

DA Manipulation Effect ds | vs| | nc| g | DS|VS |NC| G
Action Speed Z | 0o |z | Z |9 0| 0| ¥
Behavior Initiation Z | 0|z | Z] 0] 0] O 0
Task Acquisition Z | Z | Xi | Xe| O 0 Z | Z
Task Learning Maintenance Z | 0 | Xe | Xe ] O] 0| O 0
Task Reversal Learning Z | | Xe | Xe | O 0| Z | Z

= increase of effect
no change of effect

= decrease of effect
complete disruption

1 = only effective at the most extreme 2 WIPA conditions
2 = effect is relatively minor

y
0=
Z
X =
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Frontal Eye [

| | Broca's
|| Audition

7] Wernicke's
| Cognitien I Visual-pariatal
i Emotion | Visual-temporal

B Olfaction

Figure 1.1 Human Brodmann areas. Figure downloaded from
http://spot.colorado.edu/~dubin/talks/brodmann/brodmann. html
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Figure 1.2 Prefrontalcortex and its afferent and efferent connectiofiaken from Figure
1 of (Miller & Cohen, 2001)
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Caudate "
Nucle us
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o “ ' &
Subthalamic ) v nbus

Nucleus

Figure 1.3 Location and components of the basal ganghdapted from
www.stanford.edu/.../braintut/f _abl8bslgang.gifreas with nositalicized labels are
considered components of the basal ganglia. The caudate nucleus and putamen together

form the striatum.
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brainstem
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BG output control signals
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Figure 1.4 Basal ganglia anatomical circuifdapted from Figures 1 and 5 of (Gurney,
Prescott, & Redgrave, 2001f§a) Internal BG pathways. (b) External BG pathways. (c)

Functional architecture. The D1 striatal
BG output which is itself inhilbory. The D2 striatal pathway (striatt@PeGPi/SNr) is
a ONoGod pat hway because it disinhibits th

activity. The main STN pathway (STEPI/SNr) also has an inhibitory effect on
behavior.
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TRENTS in Neurasc'ano=s

Figure 1.5 Typical anatomical division of the striatum for a.rataken from Figure 1 of
(Voorn, Vanderschuren, Groenewegen, Robbins, & Pennartz,.208&)boundary

between the dorsal and ventral striatum is typically drawn at the upper dotted line. CPu =
caudateputamen; Acb = nucleus accumbens; OT = olfactory tubercle; ac = anterior
commisure.
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Figure 1.6 Anatomical map of striatum and associated cortical and subcortical
connections in a ratTaken from Figure 3 of (Voorn, Vanderschuren, Groenewegen,
Robbins, & Pennartz, 2001A gradient from dorsolateral to ventromedial according to
connectivity is noticeable. Motor areas tend to be innervated by more dorsolateral
regions of striatum, whereas associative and limbic regions are innervated more by
ventromedial regions. ACd = dorsal anterior cingulate cortex; IL = infralimbic cortex;
PLd = dorsal prelimbic cortex; PLv = ventral prelimbic cortex; SMC = sensorimotor
cortex. Note that ACd, PLd, PLv, and IL are regions of ACC/medial PFC, and are
innervaed by more ventral striatal regions.
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Figure 1.7 Major afferent and efferent pathways of the ventral tegmental area (VTA)
Taken from Figure 1 of (Fields et al., 200Qolored arrows show the percentage of
DAergic neurons in the efferent pathway¥.TA also has GABA and glutamatergic
influences.) LDT = laterodorsal tegmental nucleus; LH = lateral hypothalamus; PPTg =
pedunculopontine tegmental nucleus; SC = superior colliculus; VP = ventral pallidum.
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203
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Reward predicted
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Figure 1.8 Response of DA neurons teward conditions Taken from Figure 2 of

(Schultz, 1998) (top) DA cells react to unexpected, unpredicted rewards at the time of
reward. (middle) When a reward is reliably predicted by a conditioned stimulus, the DA
cells burst during the CS, but notrohg the reward it predicts. (bottom) However, when

a reward is predicted, but not delivered, there is a burst at the CS, but a dip at the time

that the reward was supposed to be delivered.
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Figure 1.9 Uncertaintyrelated DA cell firing in response tewardpredictive CSs

Taken from Figure 2 of (Fiorillo et al., 2003(a) Single cell rasters and histograms of
firing related to the probability (p) that a reward is delivered (in Pavolvian fashion) after
acue. E.g. p=0.75 means a reward is dedivéf; of the time. (b) Cell population
histograms observed under different probability conditions.
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Figure 1.10Summary of neurotransmitter control of corticostriatal loeign
potentiation and depression (LTP and LTD) in Go and NoGo striatal Uraieen from
Figures 1 and 2 of (Shen et al., 2008pp) Go unit (direct pathway) plasticity control.
Low DA would be expected to disrupt LTP through mipb activation. (bottom) NoGo
unit (indirect pathway) plasticity control. Low DA would be exgetto disrupt LTD
through hypeD2 activation. A2a = adenosine 2A receptor; bAP = backpropogating
action potentials; Cav 1.3 = a type ofype calcium channel; EC = endocannabinoid;
Glu = glutamate; mGIluR = metabotropic glutamate receptor.
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signal  sjgnal signal

NS

Cognitive visual
Processing

behavior l 128

commands

Motor Control

motor
commands
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Tilt Down
Figure21Model ed organism and environt#lkent. The
camera moving through a visual (128x128 pi

dri ving t hmetoreantgplmnodule, Tréck, Nod, and Shake, allow the organism

to track colord stimuli, and make accepting and rejecting responses, respectively, for
which the organism may be rewarded for correct and punished for incorrect answers.
Thecognitive processingiodule takes visual retina, auditory tone, visceral state
(hunger/frustraon), and reward (food) and punisher (shock) signals and selects the
appropriate behavior command. By default, the organism tracks colored squares, placing
its (16x16 pixel) coloisensitive fovea over the object. Based on the viewed color of the
stimulusand the last remembered auditory tone, the organism is supposed to either Nod
or Shake. The modeled organism is capable of learning and relearning mappings of color
and tone context to response behavior through operant conditioning using both rewards
andpunishers.
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Figure 2.2 Testing stimulation run showing trained full task performanbene
(Blue=C, Red=EDb) and colored square presentation (Blue, Red), model behavior
(Green=Nod, Red=Shake), errors committed (Green=Correct, Black=Miss), and
reinforcement delivery (Green=Reward) are shown over all iterations of the 1,000
iteration run. Allconjunctions of the task are shown to have been learned

(C AND Blue->Nod, C AND Red>Shake, Eb AND Red¢Nod, Eb AND Blue>Shake)
although there are a couple of missed responses.
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Figure 2.3 Testing stimulation run showing reversal full task perforoearmone

(Blue=C, Red=EDb) and colored square presentation (Blue, Red), model behavior
(Green=Nod, Red=Shake), errors committed (Green=Correct, Black=Miss, Blue =
Repeat), and reinforcement delivery (Green=Reward) are shown over all iterations of the
1,000iteration run. All conjunctions of the reversal task are shown to have been learned
(C AND Blue->Shake, C AND Re&Nod, Eb AND Ree>Shake, Eb AND Blue-Nod)
although there are a couple of missed responses and a repeated Shake.

209



